Joint estimation of sea ice and atmospheric state from microwave imagers in operational weather forecasting

Author:

Geer Alan J.1ORCID

Affiliation:

1. Research Department ECMWF Reading UK

Abstract

AbstractSatellite‐observed microwave radiances provide information on both surface and atmosphere. For operational weather forecasting, information on atmospheric temperature, humidity, cloud, and precipitation is inferred directly using all‐sky radiance data assimilation. In contrast, information on the surface state, such as sea‐surface temperature (SST) and sea‐ice concentration (SIC), is typically provided through third‐party retrieval products. Scientifically, this is a sub‐optimal use of the observations, and practically it has disadvantages such as time delays of more than 48 h. A better solution is to estimate the surface and atmospheric state jointly from the radiance observations. This has not been possible until now, due to incomplete knowledge of the surface state and the radiative transfer that links this to the observed radiances. A new approach based on an empirical state and an empirical sea‐ice surface emissivity model is used here to add sea‐ice state estimation, including SIC, to the European Centre for Medium‐range Weather Forecasts atmospheric data assimilation system. The sea‐ice state is estimated using augmented control variables at the observation locations. The resulting SIC estimates are of good quality and they highlight apparent defects in the existing OCEAN5 sea‐ice analysis. The SIC estimates can also be used to track giant icebergs, which may provide a novel maritime application for passive microwave radiances. Further, the SIC estimates should be suitable for onward use in coupled ocean–atmosphere data assimilation. There is also increased coverage of microwave observations in the proximity of sea ice, leading to improved atmospheric forecasts out to day 4 in the Southern Ocean.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3