Multivariate genomic selection models improve prediction accuracy of agronomic traits in soft red winter wheat

Author:

Winn Zachary J.12ORCID,Larkin Dylan L.1ORCID,Lozada Dennis N.1,DeWitt Noah23ORCID,Brown‐Guedira Gina24,Mason Richard Esten1

Affiliation:

1. Department of Crop, Soil, and Environmental Sciences University of Arkansas Fayetteville Arkansas USA

2. Department of Crop and Soil Sciences North Carolina State University Raleigh North Carolina USA

3. School of Plant, Environmental, and Soil Sciences Louisiana State University Baton Rouge Louisiana USA

4. USDA‐ARS Plant Science Research Unit Raleigh North Carolina USA

Abstract

AbstractUnivariate genomic selection (UVGS) is an important tool for increasing genetic gain and multivariate GS (MVGS), where correlated traits are included in genomic selection, which can improve genomic prediction accuracy. The objectives for this study were to evaluate MVGS approaches to improve prediction accuracy for four agronomic traits using a training population of 351 soft red winter wheat (Triticum aestivum L.) genotypes, evaluated over six site‐years in Arkansas from 2014 to 2017. Genotypes were phenotyped for grain yield, heading date, plant height, and test weight in both the training and test populations. In cross‐validations, various combinations of traits in MVGS models significantly improved prediction accuracy for test weight in comparison to a UVGS model. Marginal increases in predictive accuracy were also observed for grain yield, plant height, and heading date. Multivariate models which were identified as superior to the univariate case in cross‐validations were forward validated by predicting the advanced breeding nurseries of 2018 and 2020. In forward validation, consistent increases in accuracy were observed for test weight, plant height, and heading date using MVGS instead of UVGS. Overall, MVGS models improved prediction accuracies when correlated traits were included with the predicted response. The methods outlined in this study may be used to achieve higher prediction accuracies in unbalanced datasets over multiple environments.

Publisher

Wiley

Subject

Agronomy and Crop Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3