Advancing water absorption capacity in hard winter wheat using a multivariate genomic prediction approach

Author:

Wondifraw Meseret1ORCID,Winn Zachary J.2,Haley Scott D.1ORCID,Stromberger John A.1,Hudson‐Arns Emily1,Mason R. Esten1

Affiliation:

1. Department of Soil and Crop Sciences Colorado State University Fort Collins Colorado USA

2. United States Department of Agriculture Agricultural Research Service Raleigh North Carolina USA

Abstract

AbstractThe water absorption capacity (WAC) of hard wheat (Triticum aestivum L.) flour affects end‐use quality characteristics, including loaf volume, bread yield, and shelf life. However, improving WAC through phenotypic selection is challenging. Phenotyping for WAC is time consuming and, as such, is often limited to evaluation in the latter stages of the breeding process, resulting in the retention of suboptimal lines longer than desired. This study investigates the potential of univariate and multivariate genomic predictions as an alternative to phenotypic selection for improving WAC. A total of 497 hard winter wheat genotypes were evaluated in multi‐environment advanced yield and elite trials over 8 years (2014–2021). Phenotyping for WAC was done via the solvent retention capacity (SRC) using water as a solvent (SRC‐W). Traits that exhibited a significant correlation (r ≥ 0.3) with SRC‐W and were evaluated earlier than SRC‐W were included in the multivariate genomic prediction models. Kernel hardness and diameter were obtained using the single kernel characterization system (SKCS), and break flour yield and total flour yield (T‐Flour) were included. Cross‐validation showed the mean univariate genomic prediction accuracy of SRC to be r = 0.69 ± 0.005, while bivariate and multivariate models showed an improved prediction accuracy of r = 0.82 ± 0.003. Forward validation showed a prediction accuracy up to r = 0.81 for a multivariate model that included SRC‐W + All traits (SRC‐W, Diameter, SKCS hardness and diameter, F‐Flour, and T‐Flour). These results suggest that incorporating correlated traits into genomic prediction models can improve early‐generation prediction accuracy.

Funder

National Institute of Food and Agriculture

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3