Affiliation:
1. Department of Soil and Crop Sciences Colorado State University Fort Collins Colorado USA
2. United States Department of Agriculture Agricultural Research Service Raleigh North Carolina USA
Abstract
AbstractThe water absorption capacity (WAC) of hard wheat (Triticum aestivum L.) flour affects end‐use quality characteristics, including loaf volume, bread yield, and shelf life. However, improving WAC through phenotypic selection is challenging. Phenotyping for WAC is time consuming and, as such, is often limited to evaluation in the latter stages of the breeding process, resulting in the retention of suboptimal lines longer than desired. This study investigates the potential of univariate and multivariate genomic predictions as an alternative to phenotypic selection for improving WAC. A total of 497 hard winter wheat genotypes were evaluated in multi‐environment advanced yield and elite trials over 8 years (2014–2021). Phenotyping for WAC was done via the solvent retention capacity (SRC) using water as a solvent (SRC‐W). Traits that exhibited a significant correlation (r ≥ 0.3) with SRC‐W and were evaluated earlier than SRC‐W were included in the multivariate genomic prediction models. Kernel hardness and diameter were obtained using the single kernel characterization system (SKCS), and break flour yield and total flour yield (T‐Flour) were included. Cross‐validation showed the mean univariate genomic prediction accuracy of SRC to be r = 0.69 ± 0.005, while bivariate and multivariate models showed an improved prediction accuracy of r = 0.82 ± 0.003. Forward validation showed a prediction accuracy up to r = 0.81 for a multivariate model that included SRC‐W + All traits (SRC‐W, Diameter, SKCS hardness and diameter, F‐Flour, and T‐Flour). These results suggest that incorporating correlated traits into genomic prediction models can improve early‐generation prediction accuracy.
Funder
National Institute of Food and Agriculture