Best practices for addressing missing data through multiple imputation

Author:

Woods Adrienne D.1ORCID,Gerasimova Daria2ORCID,Van Dusen Ben3ORCID,Nissen Jayson4ORCID,Bainter Sierra5ORCID,Uzdavines Alex67ORCID,Davis‐Kean Pamela E.8ORCID,Halvorson Max9ORCID,King Kevin M.9ORCID,Logan Jessica A. R.10ORCID,Xu Menglin11,Vasilev Martin R.12ORCID,Clay James M.13ORCID,Moreau David1415ORCID,Joyal‐Desmarais Keven1617ORCID,Cruz Rick A.18ORCID,Brown Denver M. Y.19ORCID,Schmidt Kathleen20ORCID,Elsherif Mahmoud M.21ORCID

Affiliation:

1. Center for Learning and Development, Education SRI International Arlington Virginia USA

2. Kansas University Center on Developmental Disabilities University of Kansas Lawrence Kansas USA

3. School of Education Iowa State University Ames Iowa USA

4. Nissen Education Research and Design Corvallis Oregon USA

5. Department of Psychology University of Miami Coral Gables Florida USA

6. South Central Mental Illness Research Education, and Clinical Center, Michael E. DeBakey VA Medical Center Houston Texas USA

7. Menninger Department of Psychiatry and Behavioral Sciences Baylor College of Medicine Houston Texas USA

8. Department of Psychology University of Michigan Ann Arbor Michigan USA

9. Department of Psychology University of Washington Seattle Washington USA

10. Department of Educational Studies The Ohio State University Columbus Ohio USA

11. Department of Internal Medicine The Ohio State University Columbus Ohio USA

12. Department of Psychology Bournemouth University Bournemouth UK

13. Department of Psychology University of Portsmouth Portsmouth UK

14. School of Psychology University of Auckland Auckland New Zealand

15. Centre for Brain Research University of Auckland Auckland New Zealand

16. Department of Health, Kinesiology, and Applied Physiology Concordia University Montreal Quebec Canada

17. Montreal Behavioral Medicine Centre Centre intégré universitaire de santé et de services sociaux du Nord‐de‐l'Île‐de‐Montréal Montreal Quebec Canada

18. Department of Psychology Arizona State University Tempe Arizona USA

19. Department of Psychology University of Texas at San Antonio San Antonio Texas USA

20. School of Psychological and Behavioral Sciences Southern Illinois University Carbondale Illinois USA

21. Department of Psychology University of Birmingham Birmingham UK

Abstract

AbstractA common challenge in developmental research is the amount of incomplete and missing data that occurs from respondents failing to complete tasks or questionnaires, as well as from disengaging from the study (i.e., attrition). This missingness can lead to biases in parameter estimates and, hence, in the interpretation of findings. These biases can be addressed through statistical techniques that adjust for missing data, such as multiple imputation. Although multiple imputation is highly effective, it has not been widely adopted by developmental scientists given barriers such as lack of training or misconceptions about imputation methods. Utilizing default methods within statistical software programs like listwise deletion is common but may introduce additional bias. This manuscript is intended to provide practical guidelines for developmental researchers to follow when examining their data for missingness, making decisions about how to handle that missingness and reporting the extent of missing data biases and specific multiple imputation procedures in publications.

Publisher

Wiley

Subject

Developmental and Educational Psychology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3