Heterojunction‐Accelerating Lithium Salt Dissociation in Polymer Solid Electrolytes

Author:

Kang Junbao1,Deng Nanping1ORCID,Shi Dongjie2,Feng Yang3,Wang Ziye1,Gao Lu1,Song Yunxuan1,Zhao Yixia1,Cheng Bowen1,Li Geng23,Kang Weimin1ORCID,Zhang Kai3

Affiliation:

1. State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membranes School of Textile Science and Engineering Tiangong University Tianjin 300387 P. R. China

2. National Supercomputer Center in Tianjin Tianjin 300457 P. R. China

3. Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education) Nankai University Tianjin 300071 P. R. China

Abstract

AbstractThe practical application of solid‐state lithium‐metal batteries (SSLMBs) based on polymer solid electrolytes has been hampered by their low ion conductivity and lithium‐dendrite‐induced short circuits. This study innovatively introduces 1D ferroelectric ceramic‐based Bi4Ti3O12‐BiOBr heterojunction nanofibers (BIT‐BOB HNFs) into poly(ethylene oxide) (PEO) matrix, constructing lithium‐ion conduction highways with “dissociators” and “accelerating regions.” BIT‐BOB HNFs, as 1D ceramic fillers, not only can construct long‐range organic/inorganic interfaces as ion transport pathways, but also install “dissociators” and “accelerating regions” for these pathways through the electric dipole layer and built‐in electric field of BIT‐BOB HNFs, promoting the dissociation of lithium salts and the transfer of lithium ions. The working mechanisms of BIT‐BOB HNFs in the polymer matrix are verified by experimental tests and density functional theory calculations. The obtained composite solid electrolytes exhibit excellent lithium‐ion conductivity and migration number (6.67 × 10−4 S cm−1 and 0.54 at 50 °C, respectively). The assembled lithium symmetric battery achieves good cycling stability of over 4500 h. The LiFePO4||Li full battery delivers a high Coulombic efficiency (>99.9%) and discharge capacity retention rate (>87%) after 2200 cycles. In addition, the prepared composite polymer solid electrolyte demonstrates good practical application potential in flexible pouch batteries.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Tianjin Municipality

Tianjin Research Innovation Project for Postgraduate Students

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3