Probing lithium mobility at a solid electrolyte surface

Author:

Woodahl Clarisse,Jamnuch Sasawat,Amado Angelique,Uzundal Can B.,Berger Emma,Manset Paul,Zhu Yisi,Li YanORCID,Fong Dillon D.ORCID,Connell Justin G.ORCID,Hirata Yasuyuki,Kubota Yuya,Owada Shigeki,Tono KensukeORCID,Yabashi MakinaORCID,te Velthuis Suzanne G. E.ORCID,Tepavcevic SanjaORCID,Matsuda IwaoORCID,Drisdell Walter S.ORCID,Schwartz Craig P.ORCID,Freeland John W.ORCID,Pascal Tod A.ORCID,Zong AlfredORCID,Zuerch MichaelORCID

Abstract

AbstractSolid-state electrolytes overcome many challenges of present-day lithium ion batteries, such as safety hazards and dendrite formation1,2. However, detailed understanding of the involved lithium dynamics is missing due to a lack of in operando measurements with chemical and interfacial specificity. Here we investigate a prototypical solid-state electrolyte using linear and nonlinear extreme-ultraviolet spectroscopies. Leveraging the surface sensitivity of extreme-ultraviolet-second-harmonic-generation spectroscopy, we obtained a direct spectral signature of surface lithium ions, showing a distinct blueshift relative to bulk absorption spectra. First-principles simulations attributed the shift to transitions from the lithium 1 s state to hybridized Li-s/Ti-d orbitals at the surface. Our calculations further suggest a reduction in lithium interfacial mobility due to suppressed low-frequency rattling modes, which is the fundamental origin of the large interfacial resistance in this material. Our findings pave the way for new optimization strategies to develop these electrochemical devices via interfacial engineering of lithium ions.

Funder

Bundesministerium für Bildung und Forschung

W. M. Keck Foundation

Max-Planck-Gesellschaft

U.S. Department of Energy

National Science Foundation

Adolph C. and Mary Sprague Miller Institute for Basic Research in Science, University of California Berkeley

Publisher

Springer Science and Business Media LLC

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3