Affiliation:
1. Department of Polymeric Materials School of Materials Science and Engineering Tongji University 4800 Caoan Road Shanghai 201804 China
2. Department of Gynaecology and Obstetrics Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation Clinical Research Center for Anesthesiology and Perioperative Medicine Translational Research Institute of Brain and Brain‐Like Intelligence Shanghai Fourth People's Hospital School of Medicine Tongji University Shanghai 200434 China
Abstract
AbstractAmyloid‐β (Aβ) pathway is positioned as the center for Alzheimer's disease (AD) pathophysiology. Viable drugs targeting Aβ pathway are developed with promising outcomes. Meanwhile, most current approaches are focused on the inhibition of Aβ fibrillization or elimination of Aβ plaques by immunotherapeutic strategies. Here, near‐infrared (NIR) photothermal polypyrrole nanoparticles coated with peptide‐polyphenol are developed to both inhibit the Aβ fibrillization and disaggregate Aβ fibrils synergistically. Aβ fibrillization is obviously inhibited after being treated with the photothermal polypyrrole nanoparticles. Besides inhibition of Aβ fibrillization, the amount of Aβ fibrils is gradually reduced with time by 38.0% when co‐incubated with polypyrrole nanoparticles, indicating desired disaggregation capability against Aβ fibrils. In addition, faster and more disaggregation of Aβ fibrils is observed when irradiation by NIR light. Meanwhile, cellular studies also verified that this nanoparticle is able to effectively reduce the cytotoxicity of Aβ fibrils toward PC12 cells through disaggregating toxic Aβ aggregates and maintaining integral membrane structure. Hence, this peptide‐polyphenol‐coated NIR photothermal polypyrrole nanoparticle provides a new perspective for the inhibition of Aβ fibrillization and disaggregation of Aβ fibrils, which can serve as a promising approach for anti‐amyloidosis.
Funder
National Natural Science Foundation of China
Science and Technology Commission of Shanghai Municipality