Co‐Encapsulating Enzymes and Carbon Dots in Metal–Organic Frameworks for Highly Stable and Sensitive Touch‐Based Sweat Sensors

Author:

Zheng Xin Ting1ORCID,Leoi Melisa Wei Ning12,Yu Yong1ORCID,Tan Sherwin Chong Li1ORCID,Nadzri Naeem13,Goh Wei Peng1ORCID,Jiang Changyun1ORCID,Ni Xi Ping1,Wang Pei1,Zhao Meng1,Yang Le14ORCID

Affiliation:

1. Institute of Materials Research and Engineering (IMRE) Agency for Science Technology and Research (A*STAR) 2 Fusionopolis Way, Innovis #08‐03 Singapore 138634 Republic of Singapore

2. School of Chemistry Chemical Engineering and Biotechnology Nanyang Technological University 70 Nanyang Drive Singapore 637457 Republic of Singapore

3. Singapore Institute of Technology Singapore 138683 Republic of Singapore

4. Department of Materials Science and Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Republic of Singapore

Abstract

AbstractWearable metabolite sensors are often limited by easily denaturable enzymes that only allow short‐duration monitoring. Although encapsulating enzymes in metal–organic frameworks (MOFs) shows promise of long‐term enzyme protection, it is typically accompanied by significantly decreased activity due to increased diffusion barrier, steric hindrance for enzyme‐substrate binding, and poor enzyme‐electronic interface. Herein, the co‐encapsulation of enzymes and ultrasmall arginine‐derived carbon dots (Argdot) into a mesoporous Zeolitic Imidazolate Framework‐8 (mZIF‐8) matrix and the enhancement effect of Argdot on enzyme stability and activity, which consequently improves the electrochemical sensor's long‐term sensitivity are investigated. Specifically, the glucose oxidase (GOx)‐Argdot@mZIF‐8 nanocomposite consistently exhibits 40% higher electrochemical sensitivity compared to control GOx@mZIF‐8, an improvement similarly demonstrated with another model enzyme lactate oxidase (LOx). Furthermore, GOx‐Argdot@mZIF‐8 displays excellent stability, retaining 100% of initial sensitivity over 30 days of repeated testing at 37 °C. A touch‐based glucose sensor prototype is demonstrated as an excellent reusable sensor to monitor finger‐tip sweat glucose levels over one month at room temperature. This enzyme encapsulation strategy is not only useful for developing reusable sweat sensors with long‐term monitoring capability, but also promising to expand the industry use of enzymes under harsh conditions.

Funder

Agency for Science, Technology and Research

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3