Prediction of Novel Trigonal Chloride Superionic Conductors as Promising Solid Electrolytes for All‐Solid‐State Lithium Batteries

Author:

Wang Yao12ORCID,Ren Ziang1,Zhang Jinsen1,Lu Shaohua1,Hua Chenqiang13ORCID,Yuan Huadong1ORCID,Luo Jianmin1ORCID,Liu Yujing1ORCID,Nai Jianwei1,Tao Xinyong1ORCID

Affiliation:

1. College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 China

2. Moganshan Research Institute at Deqing County Zhejiang University of Technology Huzhou 313000 China

3. Collaborative Center for Physics and Chemistry Institute of International Innovation Beihang University Hangzhou 311115 China

Abstract

AbstractRecently emerging lithium ternary chlorides have attracted increasing attention for solid‐state electrolytes (SSEs) due to their favorable combination between ionic conductivity and electrochemical stability. However, a noticeable discrepancy in Li‐ion conductivity persists between chloride SSEs and organic liquid electrolytes, underscoring the need for designing novel chloride SSEs with enhanced Li‐ion conductivity. Herein, an intriguing trigonal structure (i.e., Li3SmCl6 with space group P3112) is identified using the global structure searching method in conjunction with first‐principles calculations, and its potential for SSEs is systematically evaluated. Importantly, the structure of Li3SmCl6 exhibits a high ionic conductivity of 15.46 mS cm−1 at room temperature due to the 3D lithium percolation framework distinct from previous proposals, associated with the unique in‐plane cation ordering and stacking sequences. Furthermore, it is unveiled that Li3SmCl6 possesses a wide electrochemical window of 0.73−4.30 V vs Li+/Li and excellent chemical interface stability with high‐voltage cathodes. Several other Li3MCl6 (M = Er, and In) materials with isomorphic structures to Li3SmCl6 are also found to be potential chloride SSEs, suggesting the broader applicability of this structure. This work reveals a new class of ternary chloride SSEs and sheds light on strategy for structure searching in the design of high‐performance SSEs.

Funder

National Basic Research Program of China

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3