Hierarchically Structured Hydrogel Composites with Ultra‐High Conductivity for Soft Electronics

Author:

Wang Zhuang1,Xu Xiaoyun1,Tan Renjie1,Zhang Shuai1,Zhang Ke1,Hu Jinlian1ORCID

Affiliation:

1. Department of Biomedical Engineering City University of Hong Kong Hong Kong SAR 999077 China

Abstract

AbstractConductive hydrogels possessing high conductivity, stretchability, and biocompatibility are promising materials for underwater devices and bioelectronics. However, typical hydrogels often exhibit low electrical conductivity, which is insufficient for applications requiring high electronic communication. A common approach to increase hydrogel conductivity is to introduce conductive fillers; however, this usually implies a partial sacrifice of stretchability, biocompatibility, and water content. In addition, the electrical properties of hydrogels tend to be unstable due to rehydration in aqueous environments. In this study, a conductive hydrogel composite is fabricated from silver nanowires (AgNWs) and poly(vinyl alcohol) (PVA) employing a synergistic method of freezing and salting‐out treatments. This combined method constructs a hierarchical hydrogel structure and increases the local concentration of AgNWs by inducing continuous phase separation. The resultant conductive hydrogel composites exhibit ultra‐high electrical conductivity (≈1739 S cm−1) and electrical stability in aqueous environments while maintaining high water content (≈87%), stretchability (≈480%), and excellent biocompatibility. To illustrate the capabilities of the conductive hydrogel composites, they are applied to bionic sharks, underwater soft circuitry, and electrocardiogram electrodes.

Funder

National Natural Science Foundation of China

City University of Hong Kong

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3