Abstract
AbstractBridging the “terahertz gap“ relies upon synthesizing arbitrary waveforms in the terahertz domain enabling applications that require both narrow band sources for sensing and few-cycle drives for classical and quantum objects. However, realization of custom-tailored waveforms needed for these applications is currently hindered due to limited flexibility for optical rectification of femtosecond pulses in bulk crystals. Here, we experimentally demonstrate that thin-film lithium niobate circuits provide a versatile solution for such waveform synthesis by combining the merits of complex integrated architectures, low-loss distribution of pump pulses on-chip, and an efficient optical rectification. Our distributed pulse phase-matching scheme grants shaping the temporal, spectral, phase, amplitude, and farfield characteristics of the emitted terahertz field through designer on-chip components. This strictly circumvents prior limitations caused by the phase-delay mismatch in conventional systems and relaxes the requirement for cumbersome spectral pre-engineering of the pumping light. We propose a toolbox of basic blocks that produce broadband emission up to 680 GHz and far-field amplitudes of a few V m−1 with adaptable phase and coherence properties by using near-infrared pump pulse energies below 100 pJ.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
United States Department of Defense | Defense Advanced Research Projects Agency
Swiss National Science Foundation | National Center of Competence in Research Quantum Science and Technology
Hans-Eggenberger-Stiftung
Swiss National Science Foundation | National Center of Competence in Research Affective Sciences - Emotions in Individual Behaviour and Social Processes
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献