Electrical Interrogation of Thickness‐Dependent Multiferroic Phase Transitions in the 2D Antiferromagnetic Semiconductor NiI2

Author:

Lebedev Dmitry1ORCID,Gish Jonathan Tyler1,Garvey Ethan Skyler2,Stanev Teodor Kosev2,Choi Junhwan1,Georgopoulos Leonidas1,Song Thomas Wei1,Park Hong Youl1,Watanabe Kenji3ORCID,Taniguchi Takashi4ORCID,Stern Nathaniel Patrick2ORCID,Sangwan Vinod Kumar1ORCID,Hersam Mark Christopher156ORCID

Affiliation:

1. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

2. Department of Physics and Astronomy Northwestern University Evanston IL 60208 USA

3. Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

4. International Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

5. Department of Chemistry Northwestern University Evanston IL 60208 USA

6. Department of Electrical and Computer Engineering Northwestern University Evanston IL 60208 USA

Abstract

Abstract2D magnetic materials hold promise for quantum and spintronic applications. 2D antiferromagnetic materials are of particular interest due to their relative insensitivity to external magnetic fields and higher switching speeds compared to 2D ferromagnets. However, their lack of macroscopic magnetization impedes detection and control of antiferromagnetic order, thus motivating magneto‐electrical measurements for these purposes. Additionally, many 2D magnetic materials are ambient‐reactive and electrically insulating or highly resistive below their magnetic ordering temperatures, which imposes severe constraints on electronic device fabrication and characterization. Herein, these issues are overcome via a fabrication protocol that achieves electrically conductive devices from the ambient‐reactive 2D antiferromagnetic semiconductor NiI2. The resulting gate‐tunable transistors show band‐like electronic transport below the antiferromagnetic and multiferroic transition temperatures of NiI2, revealing a Hall mobility of 15 cm2 V−1 s−1 at 1.7 K. These devices also allow direct electrical probing of the thickness‐dependent multiferroic phase transition temperature of NiI2 from 59 K (bulk) to 28 K (monolayer).

Funder

U.S. Department of Energy

National Science Foundation

Japan Society for the Promotion of Science

Northwestern University

Office of Naval Research

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3