Photocurrent Spectroscopy of Dark Magnetic Excitons in 2D Multiferroic NiI2

Author:

Lebedev Dmitry1,Gish J. Tyler1,Garvey Ethan S.2,Song Thomas W.1,Zhou Qunfei34,Wang Luqing34,Watanabe Kenji5,Taniguchi Takashi6,Chan Maria K.34,Darancet Pierre34,Stern Nathaniel P.2,Sangwan Vinod K.1,Hersam Mark C.178ORCID

Affiliation:

1. Department of Materials Science and Engineering Northwestern University Evanston IL 60208 USA

2. Department of Physics and Astronomy Northwestern University Evanston IL 60208 USA

3. Center for Nanoscale Materials Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA

4. Northwestern‐Argonne Institute of Science and Engineering 2205 Tech Drive Evanston IL 60208 USA

5. Research Center for Functional Materials National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

6. International Center for Materials Nanoarchitectonics National Institute for Materials Science 1‐1 Namiki Tsukuba 305‐0044 Japan

7. Department of Chemistry Northwestern University Evanston IL 60208 USA

8. Department of Electrical and Computer Engineering Northwestern University Evanston IL 60208 USA

Abstract

AbstractTwo‐dimensional (2D) antiferromagnetic (AFM) semiconductors are promising components of opto‐spintronic devices due to terahertz operation frequencies and minimal interactions with stray fields. However, the lack of net magnetization significantly limits the number of experimental techniques available to study the relationship between magnetic order and semiconducting properties. Here, they demonstrate conditions under which photocurrent spectroscopy can be employed to study many‐body magnetic excitons in the 2D AFM semiconductor NiI2. The use of photocurrent spectroscopy enables the detection of optically dark magnetic excitons down to bilayer thickness, revealing a high degree of linear polarization that is coupled to the underlying helical AFM order of NiI2. In addition to probing the coupling between magnetic order and dark excitons, this work provides strong evidence for the multiferroicity of NiI2 down to bilayer thickness, thus demonstrating the utility of photocurrent spectroscopy for revealing subtle opto‐spintronic phenomena in the atomically thin limit.

Funder

Office of Naval Research

U.S. Department of Energy

National Science Foundation

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3