A Trifunctional Hydroxylated Borophene‐Mediated MXene Enabled Super‐Stable and Fast‐Kinetics Interface Storage

Author:

Yong Bo12,Wang Yanyi2,Zhao Hang3,Wang Ting4,Zhu Jianhui2,Tai Jie2,Ma Dingtao2,Sun Shichang2,Mi Hongwei25,He Tingshu1,Zhang Peixin125ORCID

Affiliation:

1. College of Materials Science and Engineering Xi'an University of Architecture and Technology Xi'an 710055 P. R. China

2. College of Chemistry and Environmental Engineering Shenzhen University Shenzhen 518060 P. R. China

3. BTR New Material Group Company Limited Shenzhen 518106 P. R. China

4. College of Life Sciences and Oceanography Shenzhen University Shenzhen 518060 P. R. China

5. Guangdong Flexible Wearable Energy and Tools Engineering Technology Research Center Shenzhen 518060 P. R. China

Abstract

AbstractThe high electronic conductivity and tailorable structural properties of MXene materials make them promising candidates for energy storage. However, their poor chemical instability and self‐stacking effect greatly limit their application, especially in aqueous systems. Here, using a eutectic etching approach, hydroxylated borophene is used as a trifunctional mediator to construct robust Ti3C2Tx‐based MXene/B self‐assembled film electrodes for zinc‐ion capacitors (ZICs). Due to this mediator, the as‐formed strong interfacial binding within the heterostructure can give rise to an integrated modification effect and promote high‐efficiency interface energy storage. One is to strengthen the thermodynamic stability of local Ti─O bonds and inhibit the irreversible degradation of MXene; two is to enlarge the interface space of the MXene electrode and boost the ion transport; three is to improve the interfacial Zn2+ trapping ability without affecting Zn2+ migration on the MXene surface. Thus, the MXene/B electrode exhibits a high areal capacitance (537.9 mF cm−2) at a current density of 0.2 mA cm−2 and an extraordinary cycling stability at 1 mA cm−2, with 99.64% retention after 40 000 cycles, which far surpasses that of most previous reports. This work provides a pathway for overcoming the interface storage limit of MXene electrodes to construct high‐performance ZICs.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Guangdong Province

Shenzhen Science and Technology Innovation Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3