Integrated Construction of a Long‐Life Stretchable Zinc‐Ion Capacitor

Author:

Wang Wenqiang1,Gao Lu1,Kong Zimeng1,Ma Bochao1,Han Mingyu1,Wang Gengchao1ORCID,Li Chunzhong2

Affiliation:

1. Shanghai Engineering Research Center of Hierarchical Nanomaterials Shanghai Key Laboratory of Advanced Polymeric Materials School of Materials Science and Engineering East China University of Science and Technology Shanghai 200237 China

2. Shanghai Engineering Research Center of Hierarchical Nanomaterials School of Chemical Engineering East China University of Science and Technology Shanghai 200237 China

Abstract

AbstractThe major challenge in achieving high‐performance stretchable zinc‐ion energy‐storage devices is the combination of stretchable dendrite‐free zinc negative electrodes and sufficient bonding between components (current collector, electrode, separator, and package). Herein, based on a series of physicochemically tunable self‐healing polyurethanes, an elastic current collector is prepared through a swelling‐induced wrinkling method, and then a stretchable zinc negative electrode prepared through in situ confined electroplating. The elastic current collector has a nano‐network structure with polyurethane encapsulation, and exhibits both geometric and intrinsic stretchability. The stretchable zinc negative electrode formed in situ has high electrochemical activity and exhibits an excellent cycle life under the protection of a Zn2+‐permeable coating. Furthermore, fully polyurethane‐based stretchable zinc‐ion capacitors are assembled through in situ electrospinning and hot‐pressing techniques. Due to the high stretchability of the components and the interfusion of the matrixes, the integrated device exhibits excellent deformability and desirable electrochemical stability. This work provides a systematic construction plan for stretchable zinc‐ion energy‐storage devices in three aspects: material synthesis, component preparation, and device assembly.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3