Biocompatible zinc battery with programmable electro-cross-linked electrolyte

Author:

Xie Xuesong1,Li Jingjing2,Xing Zhengyue1,Lu Bingan3,Liang Shuquan1,Zhou Jiang1ORCID

Affiliation:

1. School of Materials Science and Engineering, Central South University , Changsha 410083 , China

2. Department of Plastic Surgery, Xiangya Hospital of Central South University , Changsha 410008 , China

3. School of Physics and Electronics, Hunan University , Changsha 410082 , China

Abstract

ABSTRACT Aqueous zinc batteries (ZBs) attract increasing attention for potential applications in modern wearable and implantable devices due to their safety and stability. However, challenges associated with biosafety designs and the intrinsic electrochemistry of ZBs emerge when moving to practice, especially for biomedical devices. Here, we propose a green and programmable electro-cross-linking strategy to in situ prepare a multi-layer hierarchical Zn–alginate polymer electrolyte (Zn–Alg) via the superionic binds between the carboxylate groups and Zn2+. Consequently, the Zn–Alg electrolyte provides high reversibility of 99.65% Coulombic efficiency (CE), >500 h of long-time stability and high biocompatibility (no damage to gastric and duodenal mucosa) in the body. A wire-shaped Zn/Zn–Alg/α-MnO2 full battery affords 95% capacity retention after 100 cycles at 1 A g−1 and good flexibility. The new strategy has three prominent advantages over the conventional methods: (i) the cross-linking process for the synthesis of electrolytes avoids the introduction of any chemical reagents or initiators; (ii) a highly reversible Zn battery is easily provided from a micrometer to large scales through automatic programmable functions; and (iii) high biocompatibility is capable of implanted and bio-integrated devices to ensure body safety.

Funder

National Natural Science Foundation of China

Hunan Natural Science Fund for Distinguished Young Scholar

Publisher

Oxford University Press (OUP)

Subject

Multidisciplinary

Cited by 146 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3