Simultaneous Reduction of Bulk and Contact Thermal Resistance in High‐Loading Thermal Interface Materials Using Self‐Assembled Monolayers

Author:

He Xiu123,Liu Xirui123,Huang Jiajing2345,Lin Wenbo234,Wen Jiawang56,Huang Pochung5,Zeng Xiaoliang7,Zhang Yan8,Wang Qianlong8,Lin Yue2345ORCID

Affiliation:

1. College of Chemistry Fuzhou University Fuzhou 350002 P. R. China

2. CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry Fujian Institute of Research on the Structure of Matter Fuzhou 350002 P. R. China

3. Fujian College University of Chinese Academy of Sciences Fuzhou 350002 P. R. China

4. University of Chinese Academy of Sciences Beijing 100049 P. R. China

5. Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China Fuzhou 350002 P. R. China

6. Minjiang University Fuzhou 350002 P. R. China

7. Shenzhen Institute of Advanced Electronic Materials, Shenzhen Institute of Advanced Technology Chinese Academy of Sciences Shenzhen 518055 P. R. China

8. Shen‐Rui Graphene Technology Co. Ltd. San Ming 366000 P. R. China

Abstract

AbstractThermal interface materials (TIMs) play a pivotal role in the transfer of heat from high‐temperature sources, such as CPUs, to heat sinks in power electronics. The effectiveness of grease‐type TIMs is determined by their effective thermal impedance (REFF), which hinges on optimizing both the specific bulk (RB) and contact (RC) thermal resistances. Achieving concurrent optimization of these resistances poses a significant challenge, especially in high filler loading TIMs, typically above 76 vol%. This research leverages interface engineering through Self‐Assembled Monolayers (SAMs) to address this challenge. A substantial decrease in REFF is realized to 0.169 K cm2 W−1, a tenfold enhancement compared to non‐SAM treated TIMs, which exhibit REFF values of 2.265 K cm2 W−1. This leap in performance is primarily ascribed to the reduced surface energy of SAM treated Al2O3, leading to lower particle‐to‐particle Van der Waals forces, thereby improving particle dispersion and strengthening interfacial bonds. Furthermore, longer carbon chains in SAMs result in increased RB, yet a decrease in RC, due to the chains' capacity for enhanced energy absorption and molecular entanglement. The investigation underscores the significance of shorter‐chain SAMs in fine‐tuning thermal resistance, highlighting the crucial role of molecular architecture in the design of advanced TIMs.

Funder

National Natural Science Foundation of China

Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China

Science Fund for Distinguished Young Scholars of Fujian Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3