Gate‐Tunable Spin Hall Effect in Trilayer Graphene/Group‐IV Monochalcogenide van der Waals Heterostructures

Author:

Yang Haozhe12ORCID,Chi Zhendong1ORCID,Avedissian Garen1,Dolan Eoin1,Karuppasamy Muthumalai3,Martín‐García Beatriz14ORCID,Gobbi Marco45ORCID,Sofer Zdenek3ORCID,Hueso Luis E.14ORCID,Casanova Fèlix14ORCID

Affiliation:

1. CIC nanoGUNE BRTA Donostia‐San Sebastian Basque Country 20018 Spain

2. Fert Beijing Institute MIIT Key Laboratory of Spintronics School of Integrated Circuit Science and Engineering Beihang University Beijing 100191 China

3. Department of Inorganic Chemistry University of Chemistry and Technology Prague Technicka 5 Prague 6 166 28 Czech Republic

4. IKERBASQUE Basque Foundation for Science Bilbao Basque Country 48009 Spain

5. Centro de Física de Materiales (CSIC‐EHU/UPV) and Materials Physics Center (MPC) Donostia‐San Sebastian Basque Country 20018 Spain

Abstract

AbstractSpintronic devices require materials that facilitate effective spin transport, generation, and detection. In this regard, graphene emerges as an ideal candidate for long‐distance spin transport owing to its minimal spin‐orbit coupling, which, however, limits its capacity for effective spin manipulation. This problem can be overcome by putting spin‐orbit coupling materials in close contact with graphene leading to spin‐orbit proximity and, consequently, efficient spin‐to‐charge conversion through mechanisms such as the spin Hall effect. Here, the gate‐dependent spin Hall effect in trilayer graphene proximitized with tin sulfide (SnS) is reported and quantified, a group‐IV monochalcogenide that has recently been predicted to be a viable alternative to transition‐metal dichalcogenides for inducing strong spin‐orbit coupling in graphene. The spin Hall angle exhibits a maximum around the charge neutrality point of graphene up to room temperature. The findings expand the library of materials that induce spin‐orbit coupling in graphene to a new class, group‐IV monochalcogenides, thereby highlighting the potential of 2D materials to pave the way for the development of innovative spin‐based devices and future technological applications.

Funder

National Natural Science Foundation of China

Diputación Foral de Gipuzkoa

Intel Corporation

Agencia Estatal de Investigación

Ministerstvo Školství, Mládeže a Tělovýchovy

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3