Affiliation:
1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization Department of Polymer Science and Engineering Key Laboratory of Adsorption and Separation Materials & Technologies of Zhejiang Province Zhejiang University 38 Zheda Road Hangzhou 310027 China
2. Hangzhou Gaoxi Technology Co Ltd Hangzhou 311113 China
3. Shanxi‐Zheda Institute of Advanced Materials and Chemical Engineering Taiyuan China
Abstract
AbstractWith the rapid development of high‐power electronics in aerospace, communication, and energy storage systems, the huge heat flux poses an increasing threat to the safety of electronic devices. Compared with thin films of a few micro thicknesses, high‐quality graphene thick film (GTF) exceeding hundreds of microns thickness is a promising candidate to solve thermal management challenges owing to higher heat‐flux. However, traditional GTF usually has lower thermal conductivity and weak mechanical properties attributed to disordered sheet alignment and frail interfacial adhesion. Here, a seamless bonding assembly (SBA) strategy is proposed to attain GTF over record hundreds of microns with robust coalescence interfaces. For the GTF‐SBA with ≈250 µm thickness, the in‐plane and through‐plane thermal conductivities are 925.75 and 7.03 W m−1 K−1, approximately two times and 12 times those of the GTF prepared by traditional adhesive assembly method, respectively. Furthermore, the GTF‐SBA demonstrates remarkable stability even after cycled harsh temperature shocks from 77 to 573 K, ensuring its environmental adaptability for long‐term service in extreme conditions. These findings provide valuable insights into the interfacial design of graphene bulk materials and highlight the potential applications of high‐performance graphene‐based materials for extreme thermal management demands.
Funder
National Natural Science Foundation of China
Natural Science Foundation of Zhejiang Province
Zhejiang Xinmiao Talents Program
Fundamental Research Funds for the Central Universities
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献