Bio‐Inspired Hybrid Laser Direct Writing of Interfacial Adhesion for Universal Functional Coatings

Author:

Cai Zimo1ORCID,Miao Chuyang1,Zhang Chonghao1,Luo Huayu1,Wu Jiangen2,Zhao Tianzhen3,Yang Huan2,Fan Lisha3,Yang Geng1,Ouyang Xiaoping1,Yang Huayong1,Yao Jianhua3,Xu Kaichen1ORCID

Affiliation:

1. State Key Laboratory of Fluid Power & Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310058 China

2. Sino‐German College of Intelligent Manufacturing Shenzhen Technology University Shenzhen 518118 China

3. Institute of Laser Advanced Manufacturing Zhejiang University of Technology Hangzhou 310023 China

Abstract

AbstractEnhancing interfacial adhesion between functional coatings and target surfaces facilitates long‐term stable service by mitigating interferences of mechanical mismatches. Design of mechanical interlocks affords an effective strategy to strengthen the interfacial bonding with durability and compatibility, but the in‐depth investigations are still lacked. Herein, a gecko‐inspired hierarchical strategy realized by hybrid laser direct writing is proposed, which incorporates an armored frame scale for surface protection and a riveted anchor scale for interlocks. Such dual‐scale configurations endow the functional coatings with the stronger adhesion to the targets than the pristine and mono‐scale cases, resulting in 2 orders of magnitude enhancement resistant to tape peeling tests. Utilizing this scheme, a laser‐induced integrated deicing system is in situ manufactured on thermoplastics, primarily comprising superhydrophobic structures, carbon‐based sensors as well as adhesive copper (Cu) interconnects and heaters, where Cu‐based devices exhibit superior resistance to water impacts and stress fatigue. Interfacing with signal processing modules, such an all‐in‐one system demonstrates real‐time temperature monitoring and high efficiency in deicing (4.24 folds faster than the control group). The facile route for intensified adhesion holds promise in the interfaces within advanced equipment and under harsh scenarios.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3