Enhancement of Thermal Management Performance of Copper Foil Using Additive–Free Graphene Coating

Author:

Hu Bing1,Yuan Huilin1,Chen Guohua1

Affiliation:

1. College Materials Science and Engineering, Huaqiao University, 668 Jimei Blvd, Xiamen 361000, China

Abstract

Advanced thermal interface materials with high thermal conductivity are crucial for addressing the heat dissipation issue in high-power, highly integrated electronic devices. One great potential way in this field is to take advantage of cooling copper foil (Cu) materials based on graphene (G). However, the current manufacturing of these cooling copper foil materials is accompanied by high cost, process complexity, and environmental problems, which limit their development and application. In this work, a simple, low-cost, environmentally friendly graphene-copper foil composite film (rGO/G-Cu) with high thermal conductivity was successfully prepared using graphene oxide directly as a dispersant and binder of graphene coating. The microstructure characterization, thermal conductivity and thermal management performance tests were carried out on the composite films. The results demonstrate that compared to pure copper foil (342.47 W·m−1·K−1) and 10% PVA/G-Cu (367.98 W·m−1·K−1) with polyvinyl alcohol as a binder, 10% rGO/G-Cu exhibits better thermal conductivity (414.56 W·m−1·K−1). The introduction of two-dimensional graphene oxide effectively enhances the adhesion between the coating and the copper foil while greatly improving its thermal conductivity. Furthermore, experimental results indicate that rGO/G-Cu exhibits excellent heat transfer performance and flexibility. This work is highly relevant to the development of economical and environmentally friendly materials with high thermal conductivity to meet the increasing demand for heat dissipation.

Funder

Natural Science Foundation of China

the Graphene Powder and Composite Materials Research Center of Fujian

Xiamen Key Laboratory of Polymers and Electronic Materials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3