Controlling the Supramolecular Architecture Enables High Lithium Cationic Conductivity and High Electrochemical Stability for Solid Polymer Electrolytes

Author:

Xie Ke1ORCID,Fu Qiang2ORCID,Chen Fangfang34,Zhu Haijin34,Wang Xiaoen34,Huang Gongyue34,Zhan Hualin1,Liang Qinghua1,Doherty Cara M.5,Wang Dawei6,Qiao Greg G.1ORCID,Li Dan1

Affiliation:

1. Department of Chemical Engineering The University of Melbourne Parkville Victoria 3010 Australia

2. School of Civil and Environmental Engineering University of Technology Sydney Ultimo New South Wales 2007 Australia

3. Institute for Frontier Materials Deakin University Geelong Victoria 3217 Australia

4. ARC Centre of Excellence for Electromaterials Science Deakin University Burwood Victoria 3125 Australia

5. Commonwealth Scientific and Industrial Research Organization (CSIRO) Private Bag 10 Clayton South Victoria 3169 Australia

6. School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia

Abstract

AbstractSolid polymer electrolytes (SPEs) are long sought after for versatile applications due to their low cost, light weight, flexibility, ease of scale‐up, and low interfacial impedance. However, obtaining SPEs with high Li+ conductivity (σ+) and high voltage stability to avoid concentrated polarization and premature capacity loss has proven challenging. Here a stretchable dry‐SPE is reported with a semi‐interpenetrating, supermolecular architecture consisting of a cross‐linked polyethylene oxide (PEO) tetra‐network and an alternating copolymer poly(ethylene oxide‐alt‐butylene terephthalate). Such a unique supermolecular architecture suppresses the formation of Li+/PEO intermolecular complex and enhances the oxidation stability of PEO‐based electrolyte, thus maintaining high chain segmental motion even with high salt loading (up to 50 wt%) and achieving a wide electrochemical stability window of 5.3 V. These merits enable the simultaneous accomplishment of high ionic conductivity and high Li+ transference number (t+) to enhance the energy efficiency of energy storage device, and electrochemical stability.

Funder

Australian Research Council

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3