Liberating Lithium Ions from Polymer Matrix via Harnessing Ion‐Dipole Interaction Toward Stable Solid‐State Lithium Metal Batteries

Author:

Zhang Dashan1ORCID,Luo Zicheng1,Xu Hongfei1,Guo Yu1,Chen Hao1,Ye Yuxuan1,An Junwei2,Hui Jia3,Shi Yongzheng4,Yang Shubin1,Li Bin1ORCID

Affiliation:

1. School of Materials Science & Engineering Beihang University Beijing 100191 China

2. School of Chemistry and Chemical Engineering Jining Normal University No. 59, Gongnong Street Wulanchabu City Inner Mongolia Autonomous Region 012000 China

3. Engineering Technology and Materials Research Center China Academy of Transportation Sciences Beijing 100029 China

4. College of Environmental Science and Engineering North China Electric Power University Beijing 102206 China

Abstract

AbstractAlthough polymer electrolytes have shown great potential in solid‐state lithium metal batteries (LMBs), the polymer chain segments anchor the movement of lithium ions (Li+), which induces the low ionic conductivity of the electrolytes and limits their application. Herein, a strategy of harnessing ion‐dipole interactions is proposed to liberate lithium ions from polymer chains. The adiponitrile (ADN) molecular dipole with strong bond dipole moment (C≡N, 11.8 × 10−30 C m) is introduced into the polyvinylidene fluoride‐co‐hexafluoropropylene (PVDF‐HFP) polymer matrix, achieving an electrolyte with high ionic conductivity of 5.1 × 10−4 S cm−1 at 30 °C. It is demonstrated that the strong ion‐dipole interaction between C≡N and Li+ weakens the ion‐dipole interaction of F···…Li+, facilitating Li+ dissociation and liberating Li+ from polymer chains. Moreover, a hybrid and unsaturated solvation structure is formed with the ADN molecular dipole, PVDF‐HFP polymer chain, and TFSI anion, corresponding to the solvent‐separated ion pair (SSIP) solvation structure. Thus, the obtained electrolyte realizes high ionic conductivity and lithium‐ion transference number (0.74). Consequently, the assembled lithium symmetric cell delivers stable Li stripping/plating reversibility over 900 h. Additionally, the Li|LiFePO4 full cells exhibit long‐term cycling stability at 0.5 C over 300 cycles with a capacity retention of 96.4% and ultralong cycling of 1000 cycles at a high rate (5 C).

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3