High‐Temporal‐Resolution Characterization Reveals Outstanding Random Telegraph Noise and the Origin of Dielectric Breakdown in h‐BN Memristors

Author:

Pazos Sebastian1ORCID,Becker Thales2ORCID,Villena Marco Antonio1,Zheng Wenwen1,Shen Yaqing1,Yuan Yue1,Alharbi Osamah1,Zhu Kaichen3,Roldán Juan Bautista4,Wirth Gilson2,Palumbo Felix5,Lanza Mario1ORCID

Affiliation:

1. Physical Science and Engineering Division King Abdullah University of Science and Technology (KAUST) Thuwal 23955‐6900 Saudi Arabia

2. Electrical Engineering Department Federal University of Rio Grande do Sul Porto Alegre 90035‐190 Brazil

3. MIND Department of Electronic and Biomedical Engineering Universitat de Barcelona Martí i Franquès 1 Barcelona E‐08028 Spain

4. Departamento de Electrónica y Tecnología de Computadores Facultad de Ciencias Universidad de Granada Avd. Fuentenueva s/n Granada 18071 Spain

5. Unidad de Investigación y Desarrollo de las Ingenierías‐CONICET Facultad Regional, Buenos Aires Universidad Tecnológica Nacional (UIDI‐CONICET/FRBA‐UTN) Medrano 951 Buenos Aires C1179AAQ Argentina

Abstract

AbstractMemristor‐based electronic memory have recently started commercialization, although its market size is small (~0.5%). Multiple studies claim their potential for hardware implementation of artificial neural networks, advanced data encryption, and high‐frequency switches for 5G/6G communication. Application aside, the performance and reliability of memristors need to be improved to increase their market size and fit technology standards. Multiple groups propose novel nano‐materials beyond phase‐change, metal‐oxides, and magnetic materials as resistive switching medium (e.g., two‐dimensional, nanowires, perovskites). However, most studies use characterization setups that are blind to critical phenomena in understanding charge transport across the devices. Here an advanced setup with high temporal resolution is used to analyze current noise, dielectric breakdown growth, and ambipolar resistive switching in memristors based on multilayer hexagonal boron nitride (h‐BN), one of the most promising novel nano‐materials for memristive applications. The random telegraph noise in pristine memristors and its evolution as the devices degrade, covering ~7 orders of magnitude in current with consistent observation, is studied. Additionally, an ambipolar switching regime with very low resistance down to 50Ω and its connection with a telegraph behavior with high/low current ratios >100, linked to a thermally‐driven disruption of a metallic nanofilament, is shown.

Funder

National Natural Science Foundation of China

Priority Academic Program Development of Jiangsu Higher Education Institutions

State Administration of Foreign Experts Affairs

King Abdullah University of Science and Technology

Universidad Tecnológica Nacional

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Reference94 articles.

1. Recommended Methods to Study Resistive Switching Devices

2. Resistive Switching

3. International Roadmap for Devices and Systems (IRDS) 2020 Edition IEEE IRDS  2020.

4. B.Govoreanu G. S.Kar Y. Y.Chen V.Paraschiv S.Kubicek A.Fantini I. P.Radu L.Goux S.Clima R.Degraeve N.Jossart O.Richard T.Vandeweyer K.Seo P.Hendrickx G.Pourtois H.Bender L.Altimime D. J.Wouters J. A.Kittl M.Jurczak presented atTechnical Digest –2011 Int. Electron Devices Meeting IEDM Washington DC December2011.

5. A review of emerging non-volatile memory (NVM) technologies and applications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3