Dual Doping of B and Fe Activated Lattice Oxygen Participation for Enhanced Oxygen Evolution Reaction Activity in Alkaline Freshwater and Seawater

Author:

Pan Yajuan12,Wang Zhichong2,Wang Kaixuan2,Ye Qing2,Shen Baoshou1,Yang Fangshe1,Cheng Yongliang23ORCID

Affiliation:

1. College of Urban and Environmental Sciences/Institute of Earth Surface System and Hazards Northwest University Xi'an 710127 China

2. Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education College of Chemistry and Materials Science Northwest University Xi'an 710127 China

3. Shaanxi Key Laboratory for Carbon Neutral Technology Northwest University Xi'an 710127 China

Abstract

AbstractThe exploitation of highly activity oxygen evolution reaction (OER) electrocatalysts is critical for the application of electrocatalytic water splitting. Triggering the lattice oxygen mechanism (LOM) is expected to provide a promising pathway to overcome the sluggish OER kinetics, however, effectively enhancing the involvement of lattice oxygen remains challenging. In this study, the fabrication of B, Fe co‐doped CoP (B, Fe─CoP) nanofibers is reported, which serve as highly efficient OER electrocatalyst through phosphorization and boronation treatment of Fe‐doped Co3O4 nanofibers. Experimental results combined with theoretical calculations reveal that simultaneous incorporation of both B and Fe can more effectively trigger the participation of lattice oxygen in CoFe oxyhydroxides reconstructed from B, Fe─CoP nanofibers compared to incorporating only B or Fe. Therefore, the optimized B, Fe─CoP nanofibers exhibit superb OER activity with low overpotentials of 361 and 376 mV at 1000 mA cm−2 in alkaline freshwater and alkaline natural seawater, respectively. The present work provides significant guidelines and innovative design concepts for the development of OER electrocatalysts following the LOM pathway.

Funder

National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3