Electrocatalysts Design Guided by Active Intermediates of Hydrogen Evolution Reaction

Author:

Zhang Jiachen1,Ma Caini1,Jia Shuyu1,Gu Yanan1,Sun Dongmei1,Tang Yawen1,Sun Hanjun1ORCID

Affiliation:

1. School of Chemistry and Materials Science Jiangsu Key Laboratory of New Power Batteries Jiangsu Collaborative Innovation Centre of Biomedical Functional Materials Nanjing Normal University Nanjing 210023 China

Abstract

AbstractHydrogen production from water electrolysis plays an important role for the development of hydrogen‐based energy sources. Developing efficient electrocatalysts is crucial for accelerating the reaction kinetics and achieving large‐scale water electrolysis. Despite the significant advancements in electrocatalysts for the hydrogen evolution reaction (HER) achieved over the past few decades, there remains a lack of comprehensive discussion on the in‐depth mechanism for the enhanced activity, particularly with regard to the active intermediates. Recently, with the development of state‐of‐the‐art characterization methods and theoretical computation, optimizing interaction between reaction intermediates and corresponding active sites has been demonstrated as an effective strategy to enhance the intrinsic catalytic activity. Herein, the recent advances in the electrocatalysts design guided by active intermediates of HER are presented. Emphasis is focused on the discussion of key intermediates that determine HER activity and the strategies to tune the interaction between active sites and reaction intermediates. Finally, an outlook on future challenges and perspectives on the development of electrocatalysts based on the active intermediates is given.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Natural Science Foundation of Jiangsu Province

Publisher

Wiley

Subject

General Materials Science,Renewable Energy, Sustainability and the Environment

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3