Tuning Iron Active Sites of FeOOH via Al3+ and Heteroatom Doping‐Induced Asymmetric Oxygen Vacancy Electronic Structure for Efficient Alkaline Water Splitting

Author:

Lv Jia‐Qi1,Chang Yingfei2,Chen Xinyu2,Guo Jinyu2,Sun Jing1,Su Zhong‐Min1,Zang Hong‐Ying2ORCID

Affiliation:

1. School of Chemistry and Environmental Engineering Jilin Provincial Science and Technology Innovation Center of Optical Materials and Chemistry Jilin Provincial International Joint Research Center of Photo Functional Materials and Chemistry Changchun University of Science and Technology Changchun 130022 China

2. Key Lab of Polyoxometalate Science of Ministry of Education Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province Institute of Functional Material Chemistry Faculty of Chemistry Northeast Normal University Changchun 130024 China

Abstract

AbstractOxygen evolution reaction is the essential anodic reaction for water splitting. Designing tunable electronic structures to overcome its slow kinetics is an effective strategy. Herein, the molecular ammonium iron sulfate dodecahydrate is employed as the precursor to synthesize the C, N, S triatomic co‐doped Fe(Al)OOH on Ni foam (C,N,S‐Fe(Al)OOH‐NF) with asymmetric electronic structure. Both in situ oxygen vacancies and their special electronic configuration enable the electron transfer between the d‐p orbitals and get the increase of OER activity. Density functional theory calculation further indicates the effect of electronic structure on catalytic activity and stability at the oxygen vacancies. In alkaline solution, the catalyst C,N,S‐Fe(Al)OOH‐NF shows good catalytic activity and stability for water splitting. For OER, the overpotential of 10 mA cm−2 is 264 mV, the tafel slope is 46.4 mV dec−1, the HER overpotential of 10 mA cm−2 is 188 mV, the tafel slope is 59.3 mV dec−1. The stability of the catalyst can maintain ≈100 h. This work has extraordinary implications for understanding the mechanistic relationship between electronic structure and catalytic activity for designing friendly metal (oxy)hydroxide catalysts.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Jilin Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3