Exceptional Spin‐to‐Charge Conversion in Selective Band Topology of Bi/Bi1‐xSbx with Spintronic Singularity

Author:

Rho Seungwon1ORCID,Park Hanbum12ORCID,Park Jeehong1,Jeong Kwangsik3,Kim Hyeongmun4,Hong Seok‐Bo1,Kim Jonghoon1,Lim Hyeon Wook1,Yi Yeonjin1,Kang Chul5,Cho Mann‐Ho16ORCID

Affiliation:

1. Department of Physics Yonsei University Seoul 03722 Republic of Korea

2. Department of Electrical and Computer Engineering National University of Singapore Singapore 119260 Singapore

3. Division of Physics and Semiconductor Science Dongguk University Seoul 04620 Republic of Korea

4. Department of Physics Chonnam National University Gwangju 61186 Republic of Korea

5. Advanced Photonics Research Institute Gwangju Institute of Science and Technology Gwangju 61005 Republic of Korea

6. Department of System Semiconductor Engineering Yonsei University Seoul 03722 Republic of Korea

Abstract

AbstractIn this study, spin‐to‐charge conversion (SCC) of various topological materials with ferromagnet is investigated using spintronic terahertz (THz) emission spectroscopy. Compared with other topological materials, significantly large THz emission is observed for topologically nontrivial phases of Bi1‐xSbx (x > 0.2) that predominantly originates from the topological surface state. When Bi is superposed above a certain stoichiometry of Bi1‐xSbx, it plays a crucial role in generating a highly spin‐split state and enhancing the spin‐mixing conductance, resulting in colossal THz emission. This proves that improving the SCC efficiency through interface engineering is a useful strategy to design a powerful spintronic device. Collectively, this study proposes a methodology for systematically analyzing SCC efficiency or spin Hall angle using THz emission spectroscopy and offers an efficient structure for future spintronic devices.

Funder

National Research Foundation of Korea

Electronics and Telecommunications Research Institute

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3