Interfacial Spintronic THz Emission

Author:

Agarwal Piyush12ORCID,Medwal Rohit3ORCID,Dongol Keynesh12,Mohan John Rex4ORCID,Yang Yingshu1ORCID,Asada Hironori5ORCID,Fukuma Yasuhiro4ORCID,Singh Ranjan12ORCID

Affiliation:

1. Division of Physics and Applied Physics School of Physical and Mathematical Sciences Nanyang Technological University 21 Nanyang Link Singapore 637371 Singapore

2. Center for Disruptive Photonic Technologies The Photonics Institute Nanyang Technological University Singapore 639798 Singapore

3. Department of Physics Indian Institute of Technology Kanpur Kanpur Uttar Pradesh 208016 India

4. Department of Physics and Information Technology Faculty of Computer Science and System Engineering Kyushu Institute of Technology Iizuka 820‐8502 Japan

5. Department of Electronic Devices and Engineering Graduate School of Science and Engineering Yamaguchi University Ube 755‐8611 Japan

Abstract

AbstractThe broken inversion symmetry at the ferromagnet (FM)/heavy‐metal (HM) interface leads to spin‐dependent degeneracy of the energy band, forming spin‐polarized surface states. As a result, the interface serves as an effective medium for converting spin accumulation into 2D charge current through the inverse Rashba–Edelstein effect. Exploring and assessing this spin‐to‐charge conversion (SCC) phenomenon at the FM/HM interface can offer a promising avenue to surpass the presumed limits of SCC in bulk HM layers. Spintronic heterostructures are utilized as a platform to measure the SCC experienced by photoexcited spin currents. Therefore, FM/HM heterostructures emitting terahertz electric field upon illumination by femtosecond laser pulses enable quantitative measure of the ultrafast SCC process. This results demonstrate a robust interfacial spin‐to‐charge conversion (iSCC) within a synthetic antiferromagnetic heterostructure, specifically for the NiFe/Ru/NiFe configuration, by isolating the SCC contribution originating from the interface and the bulk heavy‐metal (HM). Through the measurements of the emitted terahertz pulse, the iSCC at the NiFe/Ru interface is identified to be ≈27% of the strength as compared to SCC from the highest spin‐Hall conducting heavy‐metal, Pt. The results thus highlight the significance of interfacial engineering as a promising pathway for achieving efficient ultrafast spintronic devices.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3