Molecular Fe─N4 Moieties Coupled with Atomic Co─N4 Sites Toward Improved Oxygen Reduction Performance

Author:

Xie Peng‐Fei1,Zhong Hong2,Fang Lingzhe3,Lyu Zhaoyuan2,Yu Wan‐Jing4,Li Tao35,Lee Jiyoung6,Shin Hamin7,Beckman Scott P.2,Lin Yuehe2,Ding Shichao2,Kim Il‐Doo7ORCID,Li Jin‐Cheng1

Affiliation:

1. Faculty of Chemical Engineering Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials Kunming University of Science and Technology Kunming 650500 China

2. School of Mechanical and Materials Engineering Washington State University Pullman WA 99164 USA

3. Department of Chemistry and Biochemistry Northern Illinois University 1425 W. Lincoln Hwy. DeKalb IL 60115 USA

4. School of Metallurgy and Environment Central South University Changsha 410083 China

5. X‐ray Science Division Argonne National Laboratory 9700 South Cass Avenue Lemont IL 60439 USA

6. Department of Chemical and Biological Engineering Northwestern University Evanston IL 60208 USA

7. Department of Materials Science and Engineering Korea Advanced Institute of Science and Technology Daejeon 34141 Republic of Korea

Abstract

AbstractResearch on high‐efficiency and cost‐efficient catalysts for oxygen reduction reaction (ORR) is still a vital but challenging issue for commercializing metal–air batteries. Herein, a single‐molecule/atom hybrid catalyst is developed to boost the ORR, in which iron phthalocyanine molecules containing molecular Fe─N4 moieties couple with atomic Co─N4 sites on the surface of polyhedral carbon. Density functional theory calculations reveal that face‐to‐face laminated construction of Fe─N4 and Co─N4 in the hybrid catalyst can effectively modulate the electronic structure of active iron atoms and reduce the energy barrier of the rate‐determining step for ORR. As a result, this hybrid catalyst demonstrates excellent ORR performance, featuring a half‐wave potential of 0.904 V, a peak power density of 238.3 mW cm−2 for zinc–air battery, and outstanding electrocatalytic stability. This work offers a distinctive and robust molecular/atomic engineering approach to creating efficient electrocatalysts, advancing the fields of metal–air batteries.

Funder

National Natural Science Foundation of China

Applied Basic Research Foundation of Yunnan Province

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3