Insight into All‐Solid‐State Li–S Batteries: Challenges, Advances, and Engineering Design

Author:

Liang Fei1,Wang Sizhe12,Liang Qi1,Zhong Ao3,Yang Chao3,Qian Ji4ORCID,Song Haojie1,Chen Renjie4ORCID

Affiliation:

1. School of Materials Science and Engineering Shaanxi Key Laboratory of Green Preparation and Functionalization for Inorganic Materials Shaanxi University of Science & Technology Xi'an 710021 P. R. China

2. Yangtze Delta Region Institute (Quzhou) University of Electronic Science and Technology of China Quzhou 313001 P. R. China

3. School of Environmental and Chemical Engineering Shanghai University Shanghai 200444 China

4. Beijing Key Laboratory of Environmental Science and Engineering School of Materials Science and Engineering Beijing Institute of Technology Beijing 100081 China

Abstract

AbstractThe advancement of conventional lithium–sulfur batteries (LSBs) is hindered by the shuttle effect and corresponding safety issues. All‐solid‐state lithium–sulfur batteries (ASSLSBs) substitute the liquid electrolytes with solid‐state electrolytes (SEs) to completely isolate the cathode and anode, thereby effectively suppressing polysulfide migration and growth while significantly enhancing energy density and safety. However, the development of ASSLSBs is accompanied by several challenges such as the formation of Li dendrites, electrode degradation, poor interfacial wettability, and sluggish reaction kinetics, etc. This review systematically summarizes the recent advancements made in ASSLSBs. First, a comprehensive overview of the research conducted on advanced cathodes utilizing sulfur (S) and lithium sulfide (Li2S) is displayed. Subsequently, the SEs are classified and discussed that have been implemented in ASSLSBs. Furthermore, the issues of interfaces and anodes in ASSLSBs are analyzed. Finally, based on current laboratory advancements, rational design guidelines are proposed for each component of ASSLSBs while also presenting four practical recommendations for facilitating early commercialization.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3