Electronic Structure Regulation of MnCo2O4 via Surface‐Phosphorization Coupling to Monolithic Carbon for Oxygen Electrocatalysis in Zn–Air Batteries

Author:

Liu Yanyan123ORCID,Liu Shuling2,Zhang Pengxiang2,Zhou Jingjing1,Liu Huan2,Li Shuqi1,Li Xin1,Wang Xiaopeng1,Han Dandan1,Chen Yu4ORCID,Wang Yongfeng5,Jiang Jianchun3ORCID,Li Baojun1ORCID

Affiliation:

1. College of Science Henan Agricultural University 95 Wenhua Road Zhengzhou 450002 P. R. China

2. College of Chemistry Zhengzhou University 100 Science Road Zhengzhou 450001 P. R. China

3. Institute of Chemical Industry of Forest Products CAF National Engineering Lab for Biomass Chemical Utilization Key and Open Lab on Forest Chemical Engineering SFA 16 Suojinwucun Nanjing 210042 P. R. China

4. School of Materials Science and Engineering Shaanxi Normal University Xi'an 710062 P. R. China

5. Center for Carbon‐based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices Department of Electronics Peking University Beijing 100871 P. R. China

Abstract

AbstractAn urgent challenge to the development of rechargeable Zn–air batteries (RZABs) is the highly active, durable, and low‐cost catalysts for oxygen reduction reaction and oxygen evolution reaction (ORR and OER). Herein, a carbon‐based monolithic catalyst is designed via anchoring P‐modified MnCo2O4 inverse spinel nanoparticles on biomass‐derived carbon (P‐MnCo2O4@PWC). The introduction of surface P atoms regulates the electronic structures and valences of metal atoms by adjusting the coordination fields by (P‐O)δ– and Metal‐P. The optimization of the adsorption behavior of key intermediates facilitates the activation and conversion of reaction species. The monolithic structure is beneficial to the construction of a three‐phase interface for efficient mass transfer and high electrical conductivity. The P‐MnCo2O4@PWC catalyst displays outstanding bifunctional catalytic properties with a thin ΔE (the difference between the OER potential at 10 mA cm2 and the ORR halfwave potential) of 0.66 V. The RZAB with P‐MnCo2O4@PWC as cathode delivers an exceptional peak power density (160 mW cm2) and remarkable cycle life (over 1200 cycles), overcoming those with noble metal counterparts. This research provides a promising general surface‐phosphorization way to the design of carbon electrocatalysts and the high‐value utilization of biomass.

Funder

Fundamental Research Funds for the Central Universities

National Natural Science Foundation of China

National Outstanding Youth Science Fund Project of National Natural Science Foundation of China

Publisher

Wiley

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3