Simultaneously Improving Stretchability and Efficiency of Flexible Organic Solar Cells by Incorporating a Copolymer Interlayer in Active Layer

Author:

Zhang Dongling1,Wu Yue1,Yan Cenqi2,Cheng Pei2,Zhang Guangye3,Yang Hang1,Cui Chaohua14ORCID

Affiliation:

1. Laboratory of Advanced Optoelectronic Materials Key Laboratory of Novel Semiconductor‐Optoelectronics Materials and Devices College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 China

2. College of Polymer Science and Engineering State Key Laboratory of Polymer Materials Engineering Sichuan University Chengdu 610065 China

3. College of New Materials and New Energies Shenzhen Technology University Shenzhen 51811 China

4. Jiangsu Key Laboratory of Advanced Negative Carbon Technologies Soochow University Suzhou 215123 China

Abstract

AbstractMechanical stretchability is a vital criterion for the wearable application of organic solar cells (OSCs), while the excessive rigidity of fused‐ring small molecular acceptors make the photovoltaic film hard to meet the stretchable requirements. Herein, an effective strategy is developed to construct an intrinsically stretchable active layer by inserting copolymer PM6‐b‐PYSe as an interlayer between layer‐by‐layer processed D18 and BTP‐eC9. The copolymer interlayer shunts the penetration of BTP‐eC9 and facilitates an appropriate phase separation, favoring the enhanced crack onset strain of 17.69% compared to the D18/BTP‐eC9 film (9.67%). Combining with the optimal energy levels, prolonged carrier lifetime, and suppressed bimolecular recombination aroused by the incorporation of PM6‐b‐PYSe, the D18/PM6‐b‐PYSe/BTP‐eC9‐based OSC yields an encouraging efficiency of 17.97%. In particular, the device demonstrates excellent mechanical property, which can retain over 80% after 4000 bending cycles. This work provides an effective strategy to simultaneously enhance the intrinsic mechanical stretchability and photovoltaic performance of flexible OSCs.

Funder

National Natural Science Foundation of China

Natural Science Research of Jiangsu Higher Education Institutions of China

Key Technologies Research and Development Program

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3