Achieving Record‐High Stretchability and Mechanical Stability in Organic Photovoltaic Blends with a Dilute‐absorber Strategy

Author:

Li Saimeng1ORCID,Gao Mengyuan1,Zhou Kangkang1,Li Xin1,Xian Kaihu1,Zhao Wenchao2,Chen Yu3,He Chunyong34,Ye Long1ORCID

Affiliation:

1. School of Materials Science and Engineering Tianjin Key Laboratory of Molecular Optoelectronic Sciences Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) Tianjin University Tianjin 300350 China

2. Co‐Innovation Center of Efficient Processing and Utilization of Forest Resources College of Materials Science and Engineering Nanjing Forestry University Nanjing 210037 China

3. Institute of High Energy Physics Chinese Academy of Sciences Beijing 100049 China

4. Spallation Neutron Source Science Center Dongguan 523803 China

Abstract

AbstractOrganic solar cells (OSCs) have potential for applications in wearable electronics. Except for high power conversion efficiency (PCE), excellent tensile properties and mechanical stability are required for achieving high‐performance wearable OSCs, while the present metrics barely meet the stretchable requirements. Herein, this work proposes a facile and low‐cost strategy for constructing intrinsically stretchable OSCs by introducing a readily accessible polymer elastomer as a diluent for all‐polymer photovoltaic blends. Remarkably, record‐high stretchability with a fracture strain of up to 1000% and mechanical stability with elastic recovery >90% under cyclic tensile tests are realized in the OSCs active layers for the first time. Specifically, the tensile properties of best‐performing all‐polymer photovoltaic blends are increased by up to 250 times after blending. Previously unattainable performance metrics (fracture strain >50% and PCE >10%) are achieved simultaneously for the resulting photovoltaic films. Furthermore, an overall evaluation parameter y is proposed for the efficiency‐cost‐ stretchability balance of photovoltaic blend films. The y value of dilute‐absorber system is two orders of magnitude greater than those of prior state‐of‐the‐art systems. Additionally, intrinsically stretchable devices are prepared to showcase the mechanical stability. Overall, this work offers a new avenue for constructing and comprehensively evaluating intrinsically stretchable organic electronic films.

Funder

National Natural Science Foundation of China

Fundamental Research Funds for the Central Universities

Publisher

Wiley

Subject

Mechanical Engineering,Mechanics of Materials,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3