Affiliation:
1. Department of Chemical and Biomolecular Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
2. Department of Mechanical Engineering Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Republic of Korea
3. Department of Physics and EHSRC University of Ulsan Ulsan 44610 Republic of Korea
Abstract
AbstractHigh power conversion efficiency (PCE) and stretchability are the dual requirements for the wearable application of polymer solar cells (PSCs). However, most efficient photoactive films are mechanically brittle. In this work, highly efficient (PCE = 18%) and mechanically robust (crack‐onset strain (COS) = 18%) PSCs are acheived by designing block copolymer (BCP) donors, PM6‐b‐PDMSx (x = 5k, 12k, and 19k). In these BCP donors, stretchable poly(dimethylsiloxane) (PDMS) blocks are covalently linked with the PM6 blocks to effectively increase the stretchability. The stretchability of the BCP donors increases with a longer PDMS block, and PM6‐b‐PDMS19k:L8‐BO PSC exhibits a high PCE (18%) and 9‐times higher COS value (18%) compared to that (COS = 2%) of the PM6:L8‐BO‐based PSC. However, the PM6:L8‐BO:PDMS12k ternary blend shows inferior PCE (5%) and COS (1%) due to the macrophase separation between PDMS and active components. In the intrinsically stretchable PSC, the PM6‐b‐PDMS19k:L8‐BO blend exhibits significantly greater mechanical stability PCE80% ((80% of the initial PCE) at 36% strain) than those of the PM6:L8‐BO blend (PCE80% at 12% strain) and the PM6:L8‐BO:PDMS ternary blend (PCE80% at 4% strain). This study suggests an effective design strategy of BCP PD to achieve stretchable and efficient PSCs.
Funder
National Research Foundation of Korea
Subject
Mechanical Engineering,Mechanics of Materials,General Materials Science
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献