Printed and Stretchable Triboelectric Energy Harvester Based on P(VDF‐TrFE) Porous Aerogel

Author:

Lozano Montero Karem12ORCID,Calvo Guzman Remmi1,Tewari Amit1ORCID,Zou Haiyang23ORCID,Wang Zhong Lin24ORCID,Mäntysalo Matti1ORCID,Laurila Mika‐Matti1ORCID

Affiliation:

1. Faculty of Information Technology and Communication Sciences Tampere University Tampere 33720 Finland

2. School of Materials Science and Engineering Georgia Institute of Technology Atlanta GA 30318 USA

3. College of Materials Science and Engineering Sichuan University Chengdu 610065 China

4. Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing 101400 P. R. China

Abstract

AbstractDeveloping energy harvesting devices is crucial to mitigate the dependence on conventional and rigid batteries in wearable electronics, ensuring their autonomous operation. Nanogenerators offer a cost‐effective solution for enabling continuous operation of wearable electronics. Herein, this study proposes a novel strategy that combines freeze‐casting, freeze‐drying, and printing technologies to fabricate a fully printed triboelectric nanogenerator (TENG) based on polyvinylidene fluorid‐etrifluoroethylene P(VDF‐TrFE) porous aerogel. First, the effects of porosity and poling on the stretchability and energy harvesting capabilities of P(VDF‐TrFE) are investigated, conducting a comprehensive analysis of this porous structure's impact on the mechanical, ferroelectric, and triboelectric properties compared to solid P(VDF‐TrFE) films. The results demonstrate that structural modification of P(VDF‐TrFE) significantly enhances stretchability increasing it from 7.7% (solid) to 66.4% (porous). This modification enhances output voltage by 66% and generated charges by 48% for non‐poled P(VDF‐TrFE) porous aerogel films compared to their non‐poled solid counterparts. Then, a fully printed TENG is demonstrated using stretchable materials, exhibiting a peak power of 62.8 mW m−2 and an average power of 9.9 mW m−2 over 100 tapping cycles at 0.75 Hz. It can illuminate light‐emitting diodes (LEDs) through the harvesting of mechanical energy from human motion. This study provides a significant advance in the development of energy harvesting devices.

Funder

Tekniikan Edistämissäätiö

Walter Ahlströmin Säätiö

Academy of Finland

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3