Ferroelectric Material in Triboelectric Nanogenerator

Author:

Zhang Zhiyu1,Wu Tong12,Sun Enqi1ORCID,Chen Yahui1,Wang Ning1ORCID

Affiliation:

1. Center for Green Innovation, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China

2. National Institute of Metrology China, National Institute of Metrology, Beijing 100029, China

Abstract

Ferroelectric materials, with their spontaneous electric polarization, are renewing research enthusiasm for their deployment in high-performance micro/nano energy harvesting devices such as triboelectric nanogenerators (TENGs). Here, the introduction of ferroelectric materials into the triboelectric interface not only significantly enhances the energy harvesting efficiency, but also drives TENGs into the era of intelligence and integration. The primary objective of the following paper is to tackle the newest innovations in TENGs based on ferroelectric materials. For this purpose, we begin with discussing the fundamental idea and then introduce the current progress with TENGs that are built on the base of ferroelectric materials. Various strategies, such as surface engineering, either in the micro or nano scale, are discussed, along with the environmental factors. Although our focus is on the enhancement of energy harvesting efficiency and output power density by utilizing ferroelectric materials, we also highlight their incorporation in self-powered electronics and sensing systems, where we analyze the most favorable and currently accessible options in attaining device intelligence and multifunctionality. Finally, we present a detailed outlook on TENGs that are based on ferroelectric materials.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

University Basic Scientific Research Business Fee

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3