Anisotropic Fluorinated‐Elastomer‐Blended Micro‐Dominoes for Wearable Triboelectric Nanogenerators

Author:

Lee Giwon1ORCID,Lee Siyoung23ORCID,Kim Daegun2,Kim Su Hyun4,Choi Chungryong5,Lee Seung Goo4,Cho Kilwon2ORCID

Affiliation:

1. Department of Chemical Engineering Kwangwoon University Seoul 01897 Republic of Korea

2. Department of Chemical Engineering Pohang University of Science and Technology Pohang 37673 Republic of Korea

3. Department of Mechanical and Industrial Engineering University of Toronto Toronto M5S 3G8 Canada

4. Department of Chemistry University of Ulsan Ulsan 44610 Republic of Korea

5. Department of Polymer Science and Engineering Kumoh National Institute of Technology Gumi 39177 Republic of Korea

Abstract

AbstractTriboelectric nanogenerators (TENGs) have emerged as promising portable and sustainable energy sources in daily life, harvesting energy from human motion, water, and wind. However, they still face limitations in aspects such as contact area, deformability, wettability, and manufacturing method. Here, a wearable TENG incorporating an anisotropic domino structure based on a fluorinated elastomer blend is presented. Because of its thin, elongated structure with broad sides, the TENG achieves substantially larger contact areas and high bendability. Introducing a fluorinated elastomer into the polydimethylsiloxane matrix via a simple blending process not only enhances the triboelectric performance but also reduces surface energy and improves the stretchability of elastomers. The anisotropic arrangement of dominoes, in synergy with the fluorinated elastomer, mimics the surface physicochemical properties of natural rice leaves, resulting in anisotropic superhydrophobic wetting behavior with a self‐cleaning effect and controlled directional water flow for efficient water energy harvesting. Therefore, the TENG functions as an energy‐harvesting leaf that captures energy from wind and water droplets, as well as a wearable energy‐harvesting wristband that generates power from human motions such as touching, shaking, and hand washing.

Funder

National Research Foundation of Korea

Ministry of Education

Ministry of Science and ICT, South Korea

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3