Tiny Windows in Reticular Nanomaterials for Molecular Sieving Gas Separation Membranes

Author:

Smirnova Oksana1ORCID,Ojha Subham2,De Ankita3,Schneemann Andreas3ORCID,Haase Frederik2ORCID,Knebel Alexander14ORCID

Affiliation:

1. Friedrich Schiller University Jena Otto Schott Institute of Materials Research Fraunhoferstr. 6 07743 Jena Germany

2. Martin Luther University Halle‐Wittenberg Institute of Chemistry von‐Danckelmann‐Platz 4 D‐06120 Halle (Saale) Germany

3. Technical University Dresden Chair of Inorganic Chemistry I Bergstraße 66 01069 Dresden Germany

4. Centre for Energy and Environmental Chemistry Jena (CEEC) Philosophenweg 7a 07743 Jena Germany

Abstract

AbstractThe current state of reticular chemistry enables the synthesis of a wide range of highly porous nanomaterials for gas separation, including metal‐organic frameworks (MOFs), covalent organic frameworks (COFs), porous organic cages (POCs), metal‐organic cages (MOCs), and polyhedra (MOPs). This perspective focuses on membrane technology, a key player in energy‐efficient gas separations. It explores the world of reticular materials, taking a glance at tiny pore windows with narrow openings, which are ideal for high‐resolution molecular sieving, and how to design them. Promising concepts in this field are membranes consisting of neat materials, but also mixed matrix membranes, where polymeric films incorporate reticular fillers, creating cost‐efficient membranes. This article sheds light on the potential use of reticular materials as membrane components. The reticular synthesis of MOFs offers the ability to separate gas molecules with minimal size differences effectively. For COFs, the crucial factor lies in reducing their pore size, preferably through functional group modifications. Porous cage compounds can achieve fine distribution from homogeneous dispersions into polymers making them excellent candidates for mixed matrix membranes. This perspective provides strategies and guiding principles for the future of reticular nanomaterials‐based membranes, addressing the pressing need for advanced and efficient separation technologies.

Funder

Deutsche Forschungsgemeinschaft

Fonds der Chemischen Industrie

Thüringer Aufbaubank

Carl-Zeiss-Stiftung

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3