Affiliation:
1. Key Laboratory of Cardiovascular & Cerebrovascular Medicine School of Pharmacy Nanjing Medical University 101 Longmian Avenue Nanjing Jiangsu 211166 China
2. The Second Clinical Medical School of Nanjing Medical University Nanjing Jiangsu 211166 China
Abstract
AbstractSignificant progress has recently been made in the application of oxidized graphene (GO) quantum dots as enzyme mimics in various biomedical fields due to their bio‐compatibility and excellent solubility in physiological media. However, their catalytic performance and controllability are barely satisfactory. Here, this study constructs oxygen‐functionalized polypyrrole quantum dots (o‐ppy QDs) with excellent peroxidase activity in a mild condition. Compared with oxidized graphene QDs, o‐ppy QDs exhibit superior catalytic efficiency (120 times higher than HRP). More importantly, it is found that guanine (G) and adenine (A) bases possess higher binding affinities to o‐ppy QDs. G base is able to significantly increase the peroxidase activity while A base decreases the activity, providing a fascinating method to precisely regulate the catalytic activity of o‐ppy QDs in a programmable manner by the design of DNA sequences. The enhancement on the peroxidase by G base regulation is attributed to the existence of carbonyl group that promotes its catalytic activity, while A base tends to block the original carbonyl group on o‐ppy QDs. Based on this feature, a colorimetric and fluorescent dual‐mode biosensor for detecting DNA methylation is developed. This study holds significant theoretical and practical implications for the development of nanozymes and precise regulation of their catalytic activity.
Funder
National Natural Science Foundation of China
Nanjing Medical University
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献