Isomerization Engineering of Oxygen‐Enriched Carbon Quantum Dots for Efficient Electrochemical Hydrogen Peroxide Production

Author:

Xie Leping1,Liang Caihong2,Wu Yao2,Wang Kang1,Hou Weidong1,Guo Huazhang1,Wang Zeming1,Lam Yeng Ming2,Liu Zheng2,Wang Liang1ORCID

Affiliation:

1. Institute of Nanochemistry and Nanobiology School of Environmental and Chemical Engineering Shanghai University 99 Shangda Road, BaoShan District Shanghai 200444 P. R. China

2. School of Materials Science and Engineering Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore

Abstract

AbstractHydrogen peroxide (H2O2) has emerged as a kind of multi‐functional green oxidants with extensive industrial utility. Oxidized carbon materials exhibit promises as electrocatalysts in the two‐electron (2e) oxygen reduction reaction (ORR) for H2O2 production. However, the precise identification and fabrication of active sites that selectively yield H2O2 present a serious challenge. Herein, a structural engineering strategy is employed to synthesize oxygen‐doped carbon quantum dots (o‐CQD) for the 2e ORR. The surface electronic structure of the o‐CQDs is systematically modulated by varying isomerization precursors, thereby demonstrating excellent electrocatalyst performance. Notably, o‐CQD‐3 emerges as the most promising candidate, showcasing a remarkable H2O2 selectivity of 96.2% (n = 2.07) at 0.68 V versus RHE, coupled with a low Tafel diagram of 66.95 mV dec−1. In the flow cell configuration, o‐CQD‐3 achieves a H2O2 productivity of 338.7 mmol gcatalyst−1 h−1, maintaining consistent production stability over an impressive 120‐hour duration. Utilizing in situ technology and density functional theory calculations, it is unveil that edge sites of o‐CQD‐3 are facilely functionalized by C‐O‐C groups under alkaline ORR conditions. This isomerization engineering approach advances the forefront of sustainable catalysis and provides a profound insight into the carbon‐based catalyst design for environmental‐friendly chemical synthesis processes.

Funder

Shanghai University

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3