Lignin Powered Versatile Bioelastomer: A Universal Medium for Smart Photothermal Conversion

Author:

Sun Zhiwen1,Dang Chao2,Zhang Hongmei1,Feng Yufan1,Jiang Ming3,Hu Songnan4,Shao Yizhe2,Hao Sanwei5,Shao Changyou1,Zhai Wei2ORCID,Sun Runcang1

Affiliation:

1. Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery College of Light Industry and Chemical Engineering Dalian Polytechnic University Dalian 116034 China

2. Department of Mechanical Engineering National University of Singapore 9 Engineering Drive 1 Singapore 117575 Singapore

3. Institutes of Physical Science and Information Technology Anhui University Hefei 230601 China

4. State Key Laboratory of Pulp and Paper Engineering South China University of Technology Guangzhou 510641 China

5. Lignocellulosic Chemistry College of Materials Science and Technology Beijing Forestry University Beijing 100083 China

Abstract

AbstractPhotothermal elastomers are recognized as smart flexible materials that can rapidly and effectively convert light energy into heat energy. However, there has been a lack of adequate focus on tackling the sustainability challenges of photothermal elastomers, particularly in terms of material selection, the integration of complex functionalities, and final disposal. A fully bio‐derived photothermal elastomer (BPTE) produced through a simple and chemical‐free approach is introduced, utilizing alkali lignin, lipoic acid, and phytic acid as bio‐derived feedstocks. The BPTE exhibits an adaptive polymeric network crosslinked by dynamic covalent disulfide bonds and multiple hydrogen bonds, endowing it with dual‐mode photothermal conversion capability, robustness, stretchability, rapidly self‐healing property, hydrophobicity, swelling resistance, self‐adhesion, full recyclability, and degradability. The BPTE is further demonstrated as a next‐generation solution for photothermal generators, light‐driven actuators, photothermal antibacterial dressings, and photothermal fibers. The versatility of BPTE opens avenues for innovative smart devices and systems with significant potential in energy conversion, soft robotics, medical treatment, and smart clothing. With outstanding photothermal performances, full recyclability, and biodegradability, these fully bio‐based elastomers present an attractive prospect for the development of the advanced smart photothermal products.

Funder

National Natural Science Foundation of China

Young Elite Scientists Sponsorship Program by Tianjin

China Postdoctoral Science Foundation

State Key Laboratory of Bio-Fibers and Eco-Textiles

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3