Affiliation:
1. State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310027 China
2. Zhejiang Key Laboratory of Intelligent Operation and Maintenance Robot Hangzhou 310000 China
3. School of Electrical and Information Engineering The University of Sydney Sydney NSW 2006 Australia
Abstract
AbstractSkin‐like flexible sensors play vital roles in healthcare and human–machine interactions. However, general goals focus on pursuing intrinsic static and dynamic performance of skin‐like sensors themselves accompanied with diverse trial‐and‐error attempts. Such a forward strategy almost isolates the design of sensors from resulting applications. Here, a machine learning (ML)‐guided design of flexible tactile sensor system is reported, enabling a high classification accuracy (≈99.58%) of tactile perception in six dynamic touch modalities. Different from the intuition‐driven sensor design, such ML‐guided performance optimization is realized by introducing a support vector machine‐based ML algorithm along with specific statistical criteria for fabrication parameters selection to excavate features deeply concealed in raw sensing data. This inverse design merges the statistical learning criteria into the design phase of sensing hardware, bridging the gap between the device structures and algorithms. Using the optimized tactile sensor, the high‐quality recognizable signals in handwriting applications are obtained. Besides, with the additional data processing, a robot hand assembled with the sensor is able to complete real‐time touch‐decoding of an 11‐digit braille phone number with high accuracy.
Funder
National Natural Science Foundation of China
Subject
General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献