Machine Learning‐Enabled Tactile Sensor Design for Dynamic Touch Decoding

Author:

Lu Yuyao1,Kong Depeng1,Yang Geng12ORCID,Wang Ruohan1,Pang Gaoyang3,Luo Huayu1,Yang Huayong1,Xu Kaichen1ORCID

Affiliation:

1. State Key Laboratory of Fluid Power and Mechatronic Systems School of Mechanical Engineering Zhejiang University Hangzhou 310027 China

2. Zhejiang Key Laboratory of Intelligent Operation and Maintenance Robot Hangzhou 310000 China

3. School of Electrical and Information Engineering The University of Sydney Sydney NSW 2006 Australia

Abstract

AbstractSkin‐like flexible sensors play vital roles in healthcare and human–machine interactions. However, general goals focus on pursuing intrinsic static and dynamic performance of skin‐like sensors themselves accompanied with diverse trial‐and‐error attempts. Such a forward strategy almost isolates the design of sensors from resulting applications. Here, a machine learning (ML)‐guided design of flexible tactile sensor system is reported, enabling a high classification accuracy (≈99.58%) of tactile perception in six dynamic touch modalities. Different from the intuition‐driven sensor design, such ML‐guided performance optimization is realized by introducing a support vector machine‐based ML algorithm along with specific statistical criteria for fabrication parameters selection to excavate features deeply concealed in raw sensing data. This inverse design merges the statistical learning criteria into the design phase of sensing hardware, bridging the gap between the device structures and algorithms. Using the optimized tactile sensor, the high‐quality recognizable signals in handwriting applications are obtained. Besides, with the additional data processing, a robot hand assembled with the sensor is able to complete real‐time touch‐decoding of an 11‐digit braille phone number with high accuracy.

Funder

National Natural Science Foundation of China

Publisher

Wiley

Subject

General Physics and Astronomy,General Engineering,Biochemistry, Genetics and Molecular Biology (miscellaneous),General Materials Science,General Chemical Engineering,Medicine (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3