Affiliation:
1. Interdisciplinary Research Center for Artificial Intelligence College of Materials Science and Engineering State Key Laboratory of Organic‐Inorganic Composites Beijing University of Chemical Technology Beijing 100029 China
Abstract
AbstractWearable electronic sensors have attracted extensive attention in multifunctional electronic skin, personalized health monitoring, intelligent human–machine interaction, and smart medical treatment. However, critical challenge exists in simultaneously achieving excellent sensing performances with high sensitivity, rapid response, low sensing limit, and excellent cycling stability for full‐scale human healthcare detection and further timely photothermal therapy. For highly sensitive human skin, the spinosum microstructure in epidermis and dermis takes an important part in sensing signal amplification and transmission. Inspired by the spinosum microstructure of human skin for highly sensitive tactile perception, a skin‐inspired flexible electronic sensor is prepared from the face‐to‐face assembly of an as‐prepared polybutylene adipate‐polyurethane (PBAPU) elastomer matrix with conducting MXene nanosheets‐coated urchin‐like microstructure templated from natural chrysanthemum pollen grain microstructures, and an interdigitated electrode‐coated PBAPU elastomer substrate. The PBAPU elastomer matrix is newly prepared, exhibiting outstanding tensile strength (18.87 MPa), high stretchability (1190%), and comparable elastic modulus (1.7 MPa) to human skin. The as‐assembled flexible electronic sensor exhibits a highly sensitive sensitivity (up to 784.02 kPa−1), low detection limit (0.12 Pa), and reliable cycling stability for intelligent human–machine interfacing. The MXene nanosheets‐coated urchin‐like microstructure‐contained PBAPU possesses efficient photothermal heating performance to achieve on‐demand photothermal therapy for rehabilitation training.
Funder
National Natural Science Foundation of China
Fundamental Research Funds for the Central Universities
Beijing University of Chemical Technology
Subject
Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials
Cited by
33 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献