Skin‐Inspired High‐Performance E‐Skin With Interlocked Microridges for Intelligent Perception

Author:

Zhang Yajie1,Qiu Mingfu1,Zhang Xinyu1,Zheng Guoqiang1ORCID,Dai Kun1,Liu Chuntai1,Shen Changyu1

Affiliation:

1. School of Materials Science and Engineering Key Laboratory of Advanced Materials Processing and Mold (Ministry of Education) National Engineering Research Center for Advanced Polymer Processing Technology Zhengzhou University Zhengzhou 450001 P. R. China

Abstract

AbstractElectronic skin is increasingly receiving tremendous attention for its potential applications in medical rehabilitation and human‐machine interaction. However, the trade‐off between detection range and sensitivity of e‐skin has not been well addressed, although various strategies have been proposed. Interlocked microridges between the epidermis and dermis can effectively transfer stress to mechanoreceptors, allowing human skin to exhibit excellent sensitivity even upon both subtle and large external stimuli. Herein, inspired by human skin, a novel bionic e‐skin is developed in which interlocked microridges are introduced between the sensitive layer and interdigitated electrode. Thanks to the interlocked microridges, excellent compression capability and remarkable change of contact area between sensitive layer and interdigitated electrode can be achieved and the e‐skin exhibits an ultrahigh sensitivity (≈1502.5 kPa−1), excellent durability (10 000 cycles), a short response time (10 ms) as well as a wide detection range (≈160 kPa). Moreover, due to the effective transmission of external stress from a sensitive layer to an interdigitated electrode, such bionic e‐skin has ability to detect a wide range of human vital signs and vibrations caused by sound waves. Such facile preparation of bionic interlocked microridges opens a new pathway to achieve high‐performance e‐skins and extend their application prospects in future wearable intelligent systems.

Funder

Innovative Research Group Project of the National Natural Science Foundation of China

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3