In Operando Near‐Field Optical Investigation of Memristive Ta2O5 Thin Film Devices with a Graphene Top Electrode

Author:

Wirth Konstantin G.1ORCID,Goss Kalle2,Heisig Thomas2ORCID,Bauerschmidt Christoph1,Hessler Andreas1ORCID,Li Haolong1,Waldecker Lutz3ORCID,Dittmann Regina2ORCID,Taubner Thomas1ORCID

Affiliation:

1. 1st Institute of Physics (IA) and JARA‐FIT RWTH Aachen University 52074 Aachen Germany

2. Peter Gruenberg Institute – Electronic Materials (PGI‐7) and JARA‐FIT Forschungszentrum Juelich GmbH 52425 Juelich Germany

3. 2nd Institute of Physics and JARA‐FIT RWTH Aachen University 52074 Aachen Germany

Abstract

AbstractResistive switching devices based on metal oxides are candidates for nonvolatile memory storage. They often rely on the valence change mechanism, the field‐induced movement of donor ions leading to nanoscale conductive paths in filamentary‐type devices. Devices usually consist of a transition metal oxide like Ta2O5 sandwiched between two metal electrodes. Critical parameters of the devices, such as cycle‐to‐cycle variability, Roff/Ron ratio, and endurance depend on the morphology and composition of the filaments. However, investigating filaments on the nanoscale is cumbersome, and commonly applied techniques such as conductive atomic force or transmission electron microscopy require delaminating the metal top electrode, inhibiting in operando investigations over many switching cycles. Here, the authors use infrared scattering‐type scanning near‐field optical microscopy (s‐SNOM) to investigate resistive switching in Ta2O5 films with a graphene top electrode in operando and reveal individual filaments on the device level. By selecting an appropriate illumination frequency, the authors can trace the evolution of filaments and the joule heating‐induced retraction of the top electrode until device failure. s‐SNOM promises a deeper understanding of resistive switching devices’ microscopic switching behavior and applies to a wide range of resistive switching oxides, such as HfO2, SrTiO3, and SiO2.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Wiley

Subject

Electrochemistry,Condensed Matter Physics,Biomaterials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3