A novel method for the extraction and characterization of metabolites from Basidiomycota: Pleurotus ostreatus (Jacq.) P. Kumm., 1871 as a case study

Author:

Benvenuti Mirko1ORCID,Piazza Simone Di2,Salis Annalisa1,Cecchi Grazia2,Zotti Mirca2,Scarfì Sonia2,Damonte Gianluca1

Affiliation:

1. Department of Experimental Medicine (DIMES) University of Genova Genova Italy

2. Department of Earth, Environment and Life Sciences (DISTAV) University of Genova Genova Italy

Abstract

AbstractIn recent years, the interest in the exploitation of fungal metabolites has grown considerably, given their application in numerous sectors involving human health. However, their identification and characterization by conventional analytical approaches is generally limited to single families of molecules per method of analysis. This constitutes a limiting factor of primary importance in the study of both the metabolic pattern of a single fungal sample and the discovery of its possible applications. In this work, a reverse‐phase high‐performance liquid chromatography coupled with mass spectrometry method for the profile determination of primary and secondary metabolites produced by the oyster‐mushroom Pleurotus ostreatus (Jacq.) P. Kumm., 1871, has been developed. By using a concomitant extraction in three different polarity‐decreasing solvents, namely methanol, ethanol, and acetonitrile, this method allowed the simultaneous analysis of all extracted metabolites belonging to the widest possible range of chemical families, giving an advantage for both qualitative and quantitative determination of known and unknown compounds. The method appears to be valuable and robust for the study of complex matrices like raw fungi extract such as those of Pleurotus ostreatus cultivated on different substrates and/or exposed to multiple stressors.

Publisher

Wiley

Subject

Filtration and Separation,Analytical Chemistry

Reference32 articles.

1. High performance liquid chromatography: a short review;Malviya R;J Global Pharm Technol,2010

2. Fungal Metabolites in Human Health and Diseases—An Overview

3. Fungi and Fungal Metabolites for the Improvement of Human and Animal Nutrition and Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3