Affiliation:
1. Institute of Micro- and Nanotechnologies MacroNano Microsystems Technology Group Technische Universität Ilmenau Max-Planck-Ring 12 98693 Ilmenau Germany
2. Institute of Process Measurement and Sensor Technology Technische Universität Ilmenau Gustav-Kirchhoff-Str. 1 98693 Ilmenau Germany
Abstract
Ultralow expansion (ULE) glasses are of special interest for temperature stabilized systems for example in precision metrology. Nowadays, ULE materials are mainly used in macroscopic and less in micromechanical systems. Reasons for this are a lack of technologies for parallel fabricating high‐quality released microstructures with a high accuracy. As a result, there is a high demand in transferring these materials into miniaturized application examples, realistic system modeling, and the investigation of microscopic material properties. Herein, a technological base for fabricating released micromechanical structures and systems with a structure height above 100 μm in ULE 7972 glass is established. Herein, the main fabrication parameters that are important for the system design and contribute thus to the introduction of titanium silicate as material for glass‐based micromechanical systems are discussed. To study the mechanical properties in combination with respective simulation models, microcantilevers are used as basic mechanical elements to evaluate technological parameters and other impact factors. The implemented models allow to predict the micromechanical system properties with a deviation of only ±5% and can thus effectively support the micromechanical system design in an early stage of development.
Funder
Technische Universität Ilmenau
Deutsche Forschungsgemeinschaft
Subject
Condensed Matter Physics,General Materials Science
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献