Nano boron nitride laminated poly(ethyl methacrylate)/poly(vinyl alcohol) composite films imprinted with silver nanoparticles as gas barrier and bacteria resistant packaging materials

Author:

Behera Jayaprakash12,Patra Swapnita1ORCID,Nazrul Shaikh1,Sharma Satendra Kumar3,Kumar Deepak3,Verma Mahendra Kumar24,Katare Anil Kumar2,Swain Sarat K.1ORCID

Affiliation:

1. Department of Chemistry Veer Surendra Sai University of Technology, Burla Sambalpur Odisha India

2. Natural Products & Medicinal Chemistry CSIR‐Indian Institute of Integrative Medicine Jammu India

3. Division of Plant pathology Sher‐e‐Kashmir University of Agricultural Sciences and Technology Jammu India

4. Faculty of Chemical Sciences Academy of Scientific and Innovative Research (AcSIR) Ghaziabad Uttar Pradesh India

Abstract

AbstractHerein, nano boron nitride (BN) laminated poly(ethyl methacrylate) (PEMA)/poly(vinyl alcohol) (PVA) nanocomposite films are fabricated by using a simple in situ polymerization technique with incorporation of silver nanoparticles (Ag NPs). Structural investigations of PEMA/PVA/Ag@BN nanocomposite thin films are carried out by Fourier‐transform infrared spectroscopy, dynamic light scattering, X‐ray diffraction analysis, 1H nuclear magnetic resonance, 13C nuclear magnetic resonance, and mass spectrometry. The change in morphology of PEMA/PVA matrix due to the reinforcement of BN platelets are identified by electron microscopic studies. The unique tortuous paths are achieved by the dispersion of BN platelets by which gas penetration is restricted with enhancing the barrier properties of the material by 6.5 folds at 5 wt% BN content as compared with neat PEMA/PVA. Acid and alkali resistant along with biodegradability behavior of as‐synthesized nanocomposites are studied. From limiting oxygen index (LOI) results, it is found that the prepared materials are fire retardant in nature owing to effective reinforcement of BN layers. Antibacterial activities of PEMA/PVA/Ag@BN nanocomposite are studied by Xanthomonas citri or axonopodis pv. Citri, Escherichia coli, and Xanthomonas oryzae pv. Oryzae because of Ag NPs reinforcement. The substantial improvements in gas barrier, fire retardant, and antibacterial properties enable the materials for packaging application.

Publisher

Wiley

Subject

Materials Chemistry,Polymers and Plastics,Surfaces, Coatings and Films,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3