Investigations on thermo-mechanical properties of organically modified polymer clay nanocomposites for packaging application

Author:

Sudhakar YN1ORCID,Selvakumar M2,Bhat D Krishna3

Affiliation:

1. Department of Chemistry, Christ (Deemed to be University), Bengaluru, Karnataka, India

2. Department of Chemistry, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka, India

3. Department of Chemistry, National Institute of Technology, Surathkal, Mangalore, Karnataka, India

Abstract

Eco-friendly packing polymer materials are in the spotlight but, lack of new biodegradable polymers either natural or synthetic is yet to establish the market more competitively. So, in the present work, clay as a nano-filler is embedded and organically modified in some synthetic and natural polymers which are well established commercially to enhance their biodegradability. The impact of clay on the properties of synthetic polymers namely, poly(methyl methacrylate) (PMMA), poly(vinyl chloride) (PVC), poly(vinyl acetate) (PVAc) and natural polymer cellulose acetate butyrate (CAB) was studied. Results from differential scanning calorimetric (DSC) showed a decrease in the glass transition temperature of organically modified polymer clay nanocomposites (PCC) than pure polymers. Scanning electron microscopy (SEM) displayed a uniform surface with small-sized crystallites distributed on the polymer surface. X-ray diffraction (XRD) spectra revealed the formation of enhanced intercalated structures in PCC. Furthermore, FTIR studies showed that the interlayer bonding (Si–O bands) of pure clay is deformed in PCCs. The tensile strength of PCC increased with an increase in organo-clay loading. This unique mechanical behavior is due to the agglomeration of organo-clay particles. Finally, the biodegradation studies revealed enhanced hydrolytic degradation in PCC than pure polymers. Hence, these PCCs are environmentally friendlier than their pure synthetic polymers without significant compromise in their properties, which makes it suitable for packaging industries.

Publisher

SAGE Publications

Subject

Materials Chemistry,Polymers and Plastics,Ceramics and Composites

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3